期刊文献+

基于优化RBF-DDA神经网络的摄像机标定 被引量:3

Camera Calibration Based on Optimized RBF-DDA Neural Networks
下载PDF
导出
摘要 设计了一种改进的基于动态衰减的RBF神经网络,它能够自适应地确定RBF隐层节点数、高斯函数中心值及径向基函数的宽度,克服了原算法中过多依赖先验知识设计参数的弊病,仿真实验验证了该算法的有效性。并且将此网络应用于摄像机定标中,该网络无需确定摄像机具体的内、外部参数,而且补偿了摄像机非线性畸变,使测量结果更加准确。实验结果表明,应用该神经网络进行摄像机标定能达到较高的精度,且在机器人平面跟踪实验中得到了令人满意的结果。 This paper presents an algorithm of dynamic decay adjustment RBF neural networks which can adaptively get the number of the hidden layer nodes, the center values of Gaussian function and the width of RBF. The neural networks overcome the difficulty of fixing parameters in the former neural networks. The experimental results show that this algorithm is effective. Then it is applied into camera calibration. It doesn't require an accurate mathematical model and compensates for the nonlinear distortion of camera, which makes the outcome more accurate. The experimental results show that this neural network calibration can obtain high accuracy and it is used in the robot curve tracking successfully.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第24期244-246,共3页 Computer Engineering
关键词 优化 摄像机标定 非线性畸变 机器人跟踪 optimization camera calibration: nonlinear distortion robot tracking
  • 相关文献

参考文献7

  • 1赵清杰,孙增圻,兰丽.摄像机神经网络标定技术[J].控制与决策,2002,17(3):336-338. 被引量:23
  • 2Howell A J,Buxton H.Learning Identity with Radial Basis Function Networks[J].Neurocomputing,1998,20(1):15-34.
  • 3Chen C H.Neural Networks in Pattern Recognition and Their Application[M].Singapore:World Scientific,1991.
  • 4崔彦平,林玉池,张晓玲.基于神经网络的双目视觉摄像机标定方法的研究[J].光电子.激光,2005,16(9):1097-1100. 被引量:26
  • 5Chen S,Cowan C F N,Grant P N.Orthogonal Least Squares Learning Algorithms for Radial Basis Function Networks[J].IEEE Trans.on Neural Networks,1991,2(2):302-309.
  • 6Orr M J I.Regularization in the Selection of Radial Basis Function Centers[J].Neural Computation,1995,7(3):606-623.
  • 7Li G Y,Li H G,Dong M.An Application of Recognition Based on Optimized RBF-DDA Neural Networks[C]//Proc.of the 1st International Conference on Advances in Natural Computation.Changsha:[s.n.],2005-08:397-404.

二级参考文献14

  • 1章毓晋,傅倬.利用切线方向信息检测亚像素边缘[J].模式识别与人工智能,1997,10(1):69-74. 被引量:23
  • 2Tsai R Y. Versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE J of Robotics and Automation,1987,3(4):323-344.
  • 3Chen C H. Neural networks in pattern recognition and their applications[M]. Singapore: World Scientific,1991.
  • 4Martins H A, Birk J R, Kelley R B. Camera models based on data from two calibration planes[J]. Computer Graphics Image Processing,1981,17(2):173-180.
  • 5Malik M, Mudar S, Florent C. Automatic cameracalibration based on robot calibration[A]. IEEE Instrumentation and Measurement Technology Conference[C].1999,2:1278-1282.
  • 6Lowe D G. Solving for the parameters of object models from image description[J]. Proc Image Understanding Workshop, 1980,4: 121-127.
  • 7Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics Automation, 1987,3 (4) : 323-344.
  • 8MA Song-de, ZHANG Zheng-you. Computer Vision-Computing Theory and Algorithm Basic[M]. Beijing: Science Press, 1998.
  • 9Faig W. Calibration of close-range photogrammetric system,mathematical formulation[J]. Photommetric Eng Remote Sensing, 1975,41 (12) :1479-1486.
  • 10Sobel I. On calibration computer controlled cameras for perceiving 3D scenes [J]. Artificial Intelligence, 1974,5(2) :185-198.

共引文献41

同被引文献69

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部