摘要
提出了一个用球面小波实现几何压缩的算法.对于给定的具有任意拓扑结构的零亏格三角形网格,算法首先将其在单位球面上进行全局参数化得到一个参数化网格.然后,将一个正多面体进行细分并将每一次细分所产生的新顶点投影到单位球面上,如此生成一个细分网格.于是,在参数域内位于细分网格顶点处对定义在参数网格表面上的各种几何信号进行重采样,可得到新的具有细分结构的几何信号近似表示原始几何信号,以此满足球面细分小波对处理对象的细分结构要求,从而使得用球面细分小波对几何信号进行压缩得以实现.
This paper proposed a novel geometry compression method using spherical wavelet. Given a manifold triangle mesh with zero genus and arbitrary topology, it is globally parameterized over the unit sphere S2 in E3 firstly. At the same time, by subdividing an icosahedron and projecting all its vertices onto the unit sphere from the center, we can get a spherical triangle mesh with subdivision topology. Then we re-sampling all signals defined on the surface of the original triangle mesh at the vertices of the spherical subdivision mesh and get a set of discrete geometry signals with subdivision topology which can be compressed by using spherical wavelet.
出处
《吉首大学学报(自然科学版)》
CAS
2007年第6期37-44,共8页
Journal of Jishou University(Natural Sciences Edition)
基金
National Nature Science Foundation(60602052)
Fujian Youth Talent Innovation Project(2006F3088)
关键词
几何压缩
球面小波
细分采样
网格参数化
geometry compression
spherical wavelet
subdivision re-sampling
mesh parameterization