期刊文献+

小波变换在交通视频检测中的应用

APPLICATION OF WAVELET TRANSFORMATION TO TRAFFIC VIDED DETECTION
下载PDF
导出
摘要 小波变换在工程及图像去噪方面的应用已经越来越受到关注,有"数学显微镜"之称的小波变换在信号处理方面有着独特的优势。智能交通ITS(Intelligent Transportation System)在目标检测与识别的过程中需要对抓取的视频帧作图像预处理,以便更好地进行后续工作。对小波变换在智能交通中视频帧预处理方面的应用进行阐述和实现。首先从交通视频流中捕获视频帧,然后对含有常见噪声类型的帧进行小波去噪处理,最后从结果图像中比较分析出小波去噪的优点。 Wavelet transformation, known as digital microscope,is attracting more and more attention in the field of engineering and image denoise,and it displays its own special advantages in signal processing. During the target detection and recognition process in the ITS( Intelligent Transportation System) ,images from the grabbed video frames are preprocessed for the following work. The application of wavelet transformation to video frame preprocess in ITS is introduced and implemented. First of all ,the frames are grabbed from the video stream. Secondly, the frames with common noises are denoised by wavelet. Finally,the advantages of denoise by wavelet are analyzed.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第4期76-78,共3页 Computer Applications and Software
基金 公安部项目(20036255201)
关键词 小波变换 图像去噪 目标检测 Wavelet transformation Image denoise Target detection
  • 相关文献

参考文献4

  • 1雄四昌 陈茂军 等.一种基于小波变换图像去噪方法[J].计算机与数字工程,:33-33.
  • 2靳济芳.Visual C++小波变换技术与工程实践.人民邮电出版社.
  • 3谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 4Masayuki Hashimoto,Kenji Matsuo,et al.Tile Boundary Artifact Reduction Algorithms for Tile Size Conversion of Wavelet Image.KDDI R&D Laboratories Inc.

二级参考文献66

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献253

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部