期刊文献+

基于主分量分析的最优鉴别特征抽取 被引量:1

THE EXTRACTION OF OPTIMAL DISCRIMINATING FEATURES BASED ON PRINCIPAL COMPONENT ANALYSIS
下载PDF
导出
摘要 传统的主分量分析方法(PCA)是最为经典的图像特征抽取方法之一,由于其本质上是在最小均方差意义下给出了模式样本的最优表示,所以它通常被作为对高维图像模式进行降维的一种常用方法。但就模式分类而言,这种表示并非是最有效的。首先从统计相关性的角度揭示了PCA抽取的特征本身就具有统计不相关的良好特性。然后通过引入一种新的最大散度差类别可分性判据,从而为在PCA抽取的特征中最优鉴别特征的选取提供了一种有效策略。最后,在AR标准人脸库上的实验结果验证了算法的有效性。 The classical principal component analysis (PCA) is one of the most effective feature extraction methods. PCA essentially gives the optimal representation in a minimum of mean Square sense, so it is usually used to minify the dimension of high dimensional image pattern modes. However, the representation is not the most effective for pattern classification. Firstly, the quality property that the featUres in PCA is originally statistical uncorrelated is analyzed. Then, with a new maximum scatter-difference criterion, a new method is devoted to extract the optimal discriminating features based on principal component analysis. Finally, the experiments performed on AR face database verify the effectiveness of the proposed method.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第4期86-88,共3页 Computer Applications and Software
基金 江苏省高校自然科学基金(05KJB520152) 江苏省博士后科研资助计划项目的资助
关键词 主分量分析 特征抽取 最大散度差准则 人脸识别 Principal component analysis Feature extraction Maximum scatter-difference criterion Face recognition
  • 相关文献

参考文献11

  • 1Turk Matthew,Pentland Alex.Face recognition using Eigenfaces[C].Proc.IEEE Conf.On Computer Vision and Pattern Recognition,1991:586-591.
  • 2Pentland Alex.Looking at people:sensing for ubiquitous and wearable computing[J].IEEE Trans.Pattern Anal.Machine Intell,2000,22(1):107-119.
  • 3Maxim A Grudin.On internal representations in face recognition systems[J].Pattern Recognition,2000,33(7):1161-1177.
  • 4边肇祺 张学工 赵南元 等.模式识别 第二版[M].北京:清华大学出版社,1999..
  • 5Fisher R A.The use of multiple measurements in taxonomic problems,Annals of Eugenics 1936,7:178-188.
  • 6Foley D H,Sammon J W.An optimal set of discriminant vectors.IEEE Trans.Computer.1975,24(3):281-289.
  • 7金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108. 被引量:51
  • 8Hong Z Q,Yang J Y,et al.Optimal discriminant plane for a small number of samples and design method of classifier on the plane.Pattern Recognition,1991,24(4):317-324.
  • 9宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 10刘永俊,陈才扣.最大散度差鉴别分析及人脸识别[J].计算机工程与应用,2006,42(34):208-210. 被引量:23

二级参考文献13

  • 1Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7: 179-188
  • 2Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 3Foley D H, Sammon J W. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975,24(3): 281-289
  • 4Jin Z, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001, 34(7): 1405-1416
  • 5Bian Zhaoqi, Zhang Xuegong. Pattern Recognition. Beijing: Qinghua University Press, 2000 (in Chinese)
  • 6Hsu C, Lin C, A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transaction on Neural Networks, 2002, 13(2): 415-425
  • 7FISHER R A.The use of multiple measurements in taxonomic problems[J].Annals of Eugenics,1936,7:178-188.
  • 8FOLEY D H,SAMMON J W.An optimal set of discriminant vectors[J].IEEE Trans Computer,1975,24(3):281-289.
  • 9BELHUMEUR P N.Eigenfaces vs.fisherfaces:recognition using class specific linear projections[J].IEEE Trans Pattern Anal Machine Intell,1997,19(7):711-720.
  • 10LIU C J,WECHSLER H.Robust coding schemes for indexing and retrieval from large face databases[J].IEEE Trans Image Processing,2000,9(1):132-137.

共引文献114

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部