期刊文献+

利用改进微分进化算法实现线性系统逼近 被引量:6

A modified differential evolution algorithm for linear system approximation
下载PDF
导出
摘要 提出一种基于改进的微分进化算法的逼近算法。新算法通过参考粒子群算法惯性权重思想,引入惯性加权系数,在计算初期能够维持个体的多样性,后期能够加快算法的收敛速度,提高了DE算法的性能。最后对典型的稳定线性系统逼近问题进行了数值计算,计算结果证明该算法优于未改进微分进化算法,能够以更少的进化代数和更小的计算量找到高质量的逼近模型。 A Modified Differential Evolution (MDE) algorithm is proposed for realizing linear system approximation. The modified algorithm introduces an inertia scaling factor, which can dynamically maintain the diversity of the individuals at early stages and quicken convergence speed of the algorithm at later stages. Thus the performance of DE algorithm is improved. The approximation of a typical stable linear system was computed numerically, and the results showed that the algorithm is superior to the traditional DE, which can find a high-quality approximation model with less evolution generations and at lower computation cost.
出处 《电光与控制》 北大核心 2008年第5期35-37,共3页 Electronics Optics & Control
关键词 线性系统逼近 微分进化算法 粒子群算法 加权系数 惯性加权 linear system approximation differential evolutionary algorithm particle swarm optimization weighted coefficient inertia scaling factor
  • 相关文献

参考文献10

二级参考文献51

  • 1李令莱,王凌,郑大钟.基于一类SMSA策略的模型最优降阶[J].控制与决策,2004,19(8):947-950. 被引量:7
  • 2钟伟才,刘静,焦李成.多智能体遗传算法用于线性系统逼近[J].自动化学报,2004,30(6):933-938. 被引量:25
  • 3刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 4王凌.智能优化算法及应用[M].北京:清华大学出版社,2001.17-35.
  • 5Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58-73.
  • 6Trelea I. The particle swarm optimization algorithm: Convergence analysis and parameter selection[ J ]. Information Processing Letters, 2003, 85(6):317-325.
  • 7Eberhart R, Shi Y. Comparing Inertia Weigthts and Constriction Factors in Particle Swarm Optimization[ C]. IEEE Congress on Evolutionary Computation, Piscataway: IEEE Service Center, 2000. 84-88.
  • 8Kennedy J, Eberhart R. Particle Swarm Optimization[ C]. IEEE Int. Conf. on Neural Networks, Piscataway: IEEE Service Center,1995. 1942-1948.
  • 9Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. Proc. on Int. Symposium on Micro Machine and Human Science, Piscataway: IEEE Service Center, 1995. 39--43.
  • 10Kennedy J. The Particle Swarm: Social Adaptation of Knowledge[ CI. IEEE Int. Conf. on Evolutionary Computation, Piscataway:IEEE Service Center, 1997. 303-308.

共引文献125

同被引文献60

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部