期刊文献+

癫痫大鼠脑电信号的除趋势涨落分析 被引量:2

Detrended Fluctuation Analysis of Epileptic Rat EEG
下载PDF
导出
摘要 除趋势涨落分析(Detrended fluctuation analysis,DFA)是一种较新的非稳态时间序列长时程暂态相关(Long-range temporal correlation,LRTC)结构特征分析方法,人们已将它初步应用于正常脑电信号和疾病脑电信号的相关性分析之中,取得了一些有意义的结论。我们用DFA方法分析了匹罗卡品痫样放电大鼠模型的不同脑区和不同脑功能状态下脑电演化行为的参数——标度指数,结果表明:癫痫大鼠从无痫样放电到连续痫样放电再到周期痫样放电的过程转变中,4个脑区(左皮层、右皮层,左海马、右海马)的标度因子分别从约0.97到0.82再到0.94变化,配对样本T检验表明,同一脑区不同脑功能状态间的标度因子有显著性差异(P<0.05),提示这三种脑功能状态的局部神经网络动力学可能不同。对三种不同的脑功能状态,标度因子在不同脑区上没有显著性差异(P>0.05)。 Detrended fluctuation analysis (DFA) is a new technique used to characterize the long-range temporal correlation ( LRTC) structure of non-stationary time series, which has been applied in electroencephalographic ( EEG) oscillations and diseases such as Alzheimer and stroke. In this paper, DFA is used to study the scaling exponents of intracranial EEG recordings of Pilocarpine-induced epileptic rat. It was found that when the brain functional status changed from nonepileptiform discharges to continuous-epileptiform discharges and to period-epileptiform discharges, the average scaling exponents of four brain regions (left cortex and left hippocarnpus, right cortex and right hippocarnpus) changed from 0,97 to 0.82 and to 0.94, and a statistically significant difference between the brain functional states was shown by paired T test ( P〈 0,05 ), thus suggesting that the local neuronal network dynamics of the three brain function states may be different. But in regard to the three brain function states, there is no statistically significant difference between the four brain regions( P 〉0.05 ).
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2008年第2期255-258,共4页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30400105,30570474) 973项目资助(2003CB716106) 国家杰出青年基金资助项目(30525030)
关键词 除趋势涨落分析 长时程相关 癫痫 脑电信号 Detrended fluctuation analysis (DFA) Long-range temporal correlation (LRTC) Epilepsy Elect roencephalography { EEG }
  • 相关文献

参考文献12

  • 1Stanley HE, Buldyrev SV, Goldberger AL, et al. Statistical mechanics in biology: how ubiquitous are long-range correlations? Physica A, 1994; 205:214
  • 2Bassingthwaighte JB, Liehovitch LS, West BJ. Fractal physiology. New York: Oxford University Press, 1994:95-99
  • 3Popivanov D, Mineva A. Testing procedures for non-stationarity and non-linearity in physiological signals. Mathematical Biosciences, 1999; 157:303
  • 4Peng CK, Havlin S, Stanley HE, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 1995; 5:82
  • 5Nikulin W, Brismar T. Long-range temporal correlations in electroencephalographic oscillations: relation to topography, frequency band, age and gender. Neuroscience, 2005; 130:549
  • 6Stam CJ, Montez T, Jones BF, et al. Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease. Clinical Neurophysiology, 2005 ,116: 708
  • 7Lee JM, Kim DJ, Kim IY, et al. Nonlinear-analysis of human sleep EEG using detrended, fluctuation analysis. Medical Engineering & Physics, 2004; 26:773
  • 8Hwa RC, Ferree TC. Stroke detection based on the scaling properties of human EEG. Physiea A, 2004; 338:246
  • 9Costa MS, Roeha JB, Perosa S, et al. Pilocarpine-indueed status epilepticus increases glutamate release in rat hippocampal synaptosomes. Neuroscience Letters, 2004; 356:41
  • 10Parish LM, Worrell GA, Cranstoun SD, et al. Long-range temporal correlations in epileptogenic and non-epileptogenic human hippocampus. Neuroscience, 2004; 125:1069

同被引文献24

  • 1白冬梅,邱天爽,李小兵.样本熵及在脑电癫痫检测中的应用[J].生物医学工程学杂志,2007,24(1):200-205. 被引量:25
  • 2朱晓妍,刘宗华,唐明.Detrended Fluctuation Analysis of Traffic Data[J].Chinese Physics Letters,2007,24(7):2142-2145. 被引量:1
  • 3丁亮晶,彭虎,蔡世民,周佩玲.Multifractal Analysis of Human Heartbeat in Sleep[J].Chinese Physics Letters,2007,24(7):2149-2152. 被引量:2
  • 4World Health Organization. Global status report on road safety2013 [ R]. Geneva : WHO ,2013.
  • 5Sahayadhas A , Sundaraj K , Murugappan M. Detecting driverdrowsiness based on sensors : A review [ J ]. Sensors, 2012 ,12(12):16937 -16953.
  • 6Coetzer R C,Hancke G P. Driver fatigue detection : A survey[ C]//2009 AFRICON,AFRICON ’ 09, IEEE ,2009:1 -6.
  • 7Wang J,Wu Y Y, Qu H, et al. EEG-based fatigue driving detectionusing correlation dimension [ J ]. Journal of Vibroengineering,2014,16(1) :407 -413.
  • 8Peng C K, Havlin S,Stanley H E,et al. Quantification of scalingexponents and crossover phenomena in nonstationary heartbeattime series [ J ]. Chaos : An Interdisciplinary Journal of NonlinearScience,1995,5(1) :82 -87.
  • 9Nguyen-Ky T, Wen P, Li Y. Improving the accuracy of depth ofanaesthesia using modified detrended fluctuation analysismethodf J]. Biomedical Signal Processing and Control, 2010,5(1):59 -65.
  • 10Lee J S,Yang B H, Lee J H, et al. Detrended fluctuation analysisof resting EEG in depressed outpatients and healthy controls[ J].Clinical Neurophysiology ,2007 ,118 (11) :2489 —2496.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部