期刊文献+

调强逆向治疗计划中使用简化剂量计算模型的影响及其改善方法 被引量:1

The Influence of Using Simplified Model for Beamlet Dose Calculations in IMRT Treatment Planning and the Approaches to Diminish the Influence
下载PDF
导出
摘要 制定逆向放疗计划时往往使用计算效率较高的简化剂量计算模型来得到射束元剂量矩阵,但使用简化的剂量计算模型可能会对最终调强计划的质量产生一定的影响。我们研究了在制定调强计划时使用简化剂量计算模型得到射束元剂量分布对最终沉积剂量的影响及其改善方法。采用两个模拟实例,使用两种剂量计算模型:原射线剂量计算模型(不考虑散射线的影响)和微分卷积积分剂量计算模型(考虑散射线的影响)。结果表明用原射线剂量计算模型得到射束元剂量矩阵作调强最优化,可能导致靶区边缘剂量欠缺的情况,采用给靶区加扩展区的方法和平移叠野法可以改善靶区边缘的剂量分布情况。 Simplified dose calculation model with high computation efficiency is often used to generate the dose matrices for bearnlets in the inverse planning of the intensity modulate radiation therapy. It is likely that this simplification could degrade the quality of the final treatment plans. This paper is aimed at testing the influence of such simplification in dose calculations of bearnlets and accordingly proposing methods to avoid severe degradation of the plans. Two simulation instances were adopted, The primary dose calculation model without involvment of scattering effect was used to generate the dose matrices of bearnlets. The differential convolution superposition dose calculation model that well accounts for scattering effect was used to calculate the final dose distributions for given intensity profiles. It is found that the simplification in dose matrices of bearnlets degrades the dose levels in the edge area of the targets, however, the degradation could be diminished or even avoided by adding a suitable margin around the targets or by using the multiple-shifted-beamlet-matrices {MSBM) method that was proposed in our previous paper.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2008年第2期270-274,共5页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(10475059) 优秀青年教师资助计划项目
关键词 调强放射治疗 最优化 剂量计算模型 Intensity modulate radiation therapy (IMRT) Optimization Dose calculation model
  • 相关文献

参考文献9

  • 1Webb S. Intensity modulated radiation therapy. Institute of Physics Publishing, Bristol. 2001:298-330
  • 2Intensity modulated radiation therapy collaborative working group, Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiation Oneology Biol Phys, 2001 ; 51 (4) : 880
  • 3Maekic TR, Serimger JW, Battlsta JJ. A convolution method of calculating dose for 15MV X rays. Med Phys, 1985 ; 12 (2) : 188
  • 4Mackic TR, Bielajew AF, Rogers DWO, et al. Generation of photonenergy deposition kernels using the EGS Monte Carlo code. Med Phys, 1988;33(1 ) : 1
  • 5Boyer A, Mok E. Photon dose distribution model employing convolution calculations. Med Phys, 1985; 12(2) : 169
  • 6Mohan R, Chui C. Different pencil beam dose computation model for photons. Med Phys, 1986;13(1):64
  • 7Hou Q, Wang J, Chen Y, et al. An optimization algorithm for intensity modulated radiotherapy-The simulated dynamics with dosevolume constraints. Med Phys, 2003;30(1) :61
  • 8Spirou SV, Chui C. A gradient inverse planning algorithm with dose-volume constraints. Med Phys, 1998;25(3):321
  • 9Hou Q, Zhang CH, Wu ZW. A method to improve spatial resolution and smoothness of intensity profiles in IMRT treatment planning. Med Phys, 2004;31(6) : 1339

同被引文献15

  • 1Steve Webb. Intensity modulated radiation therapy. Sutton Surrey(UK): Institute of Physics Publishing. 2001, 298- 330.
  • 2Intensity ModulatedRadiation Therapy Collaborative Working Group. Int J Radiation Oncology Biol Phys, 2001, 51 (4): 880.
  • 3Webster G J, Rowbottom C G, Mackay R I. Med Phys, 2006, 33(6): 2065.
  • 4OttoK. MedPhys, 2007, 35(1): 310.
  • 5Steve Webb, Mcquaid D. Med Phys, 2009, 54(14): 4345.
  • 6RamseyC. MedPhys, 2007, 34(6): 2604.
  • 7Ramsey C. Med Phys, 2007, 34(6): 2614.
  • 8Mackic T R, Scrimger J W, Battista J J. Med Phys, 1985, 12(2) : 188.
  • 9Mackic T R, Bielajew A F, Rogers D W O, et al. Med Phys, 1988, 33(1): 1.
  • 10Boyer A, Mok E. Med Phys, 1985, 12(2): 169.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部