期刊文献+

基于核磁共振技术的生物阻抗成像研究进展 被引量:2

A Review of Electrical Impedance Tomography Based on MRI Technique
下载PDF
导出
摘要 我们对最新发展的阻抗成像方法——核磁共振电阻抗成像(Magnetic resonance electrical impedance tomography,MREIT)技术进行了综述,简要介绍了CT(Computerized tomography,CT)和MRI(Magnetic resonanceimaging,MRI)成像技术的基本原理,详述了MREIT技术基本理论和目前MREIT算法的发展状况,并就MREIT的发展前景及目前存在的问题进行了分析。 In this paper, a review of a new electrical impedance tomography technique-magnetic resonance electrical impedance tomography ( MREIT) is presented. Some medical imaging methods are briefly introduced. The basic theory of MREIT is given as well as its realization methods and developing status. The merits and challenges of this new trend are also demonstrated.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2008年第2期468-471,共4页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(50577055) 美国国家科学基金资助项目(NSFBES-0411898) 美国国立卫生院基金资助项目(NIHR01EB00178)
关键词 核磁共振阻抗成像 电流密度成像 磁感应强度测量 电阻抗分布 Magnetic resonance electrical impedance tomography (MREIT) Current density imaging Magnetic flux density measurement Conductivity distribution
  • 相关文献

参考文献13

  • 1Ozdemir MS, Eyuboglu BM, Ozbek O. Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization. Phys Med Biol, 2004 ;49:4765
  • 2Seo JK, Ycon JR, Woo EJ, et al. Reconstruction of conductivity and current density imaging using only one component of magnetic field measurements. IEEE Trans Biomed Eng, 2003;50(9) : 1121
  • 3Oh SH, Lee BI, Woo EJ, et al. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomngraphy. Phys Med Biol, 2003; 48(19) : 3101
  • 4Oh SH, Lee BI, Woo EJ, et al. Electrical conductivity images of biological tissue phantom in MREIT. Physiol Meas, 2005; 26(2) : S279
  • 5Park C, Kwon O, Woo EJ,et al. Electrical conductivity imaging using gradient Bz decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT). IEEE Trans Med Imaging, 2004;23(3) :388
  • 6Ider YZ, Onart S. Algebfic reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density. Physiol Meas, 2004 ;25:281
  • 7Gao N, Zhu SA, He B. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement. Phys Med Biol, 2005; 50(11):2675
  • 8Gao N, Zhu SA, He B. Detecting human head conductivity distribution by means of an RSM-MREIT algorithm. Proceeding of the 27th International Conference of the IEEE EMBS, 2005 ; 2641- 2643
  • 9Gao N,Zhu SA, He B. Deeteeting human head conductivity distribution using one component rnagnetie flux density. Proceeding of the 27th International Conference of the IEEE EMBS, 2005, 1537-1539
  • 10Seo JK, Pyo HC, Park C, et al. Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study. Phys Med Biol, 2004 ;49 : 4371

同被引文献50

  • 1殷朝庆,董秀珍,刘锐岗,尤富生,付峰,史学涛,王聪,刘程睿.脑磁感应成像的数学模型及仿真结果[J].第四军医大学学报,2006,27(20):1913-1915. 被引量:4
  • 2闫丹丹,张孝通,朱善安,Bin He.头部组织三维核磁共振电阻抗成像算法的仿真研究[J].生物物理学报,2006,22(6):461-470. 被引量:7
  • 3王聪,董秀珍,刘锐岗,史学涛,付峰,尤富生.磁感应断层成像技术中涡流问题的有限元法仿真研究[J].航天医学与医学工程,2007,20(3):219-222. 被引量:8
  • 4Mark J. Hamamura, L. Tugan Muftuler. Fast imaging for magnetic resonance electrical impedance tomography [J]. Magnetic Resonance Imaging. 2008,26:739-745.
  • 5Griffiths H. Magnetic induction tomography [J]. Meas Sci Techno. 2001,12(8):1126-1131.
  • 6Karl HoUaus, Christian Magele, et al. Numerical Simulation of the Eddy Current Problem in Magnetic Induction TomogTaphy for Biomedical Applications by Edge Elements[J]: IEEE TRANSACTIONS ON MAGNETICS. 2004,40(2):623-626.
  • 7H. Scharfetter, P. Riu, et al. Sensitivity maps for low-contrast pertur- bations within conducting background in magnetic induction tomography[J]. Physiological measurement. 2002,23(1):195-201.
  • 8Yasheng Maimaitijiang, Mohammed Ali Roula, et al. Parallelization methods for implementation of a magnetic induction tomography forward model in symmetric muhiprocessor systems[J]. Parallel Computing. 2008,34:497-507.
  • 9M. H. Pham and A. J. Peyton, A Model for the Forward Problem in Magnetic Induction Tomography Using Boundary Integral Equations[J]. IEEE TRANSACTIONS ON MAGNETICS. 44(10):2262-2267.
  • 10Hermann Scharfetter, Karl Hallaus, et al. Single-Step 3-D Image Re- construction in Magnetic Induction Tomography: Theoretical Limits of Spatial Resolution and Contrast to Noise Ratio[J]. Annals of Biomedical Engineering. 2006,34(11):1786-1798.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部