期刊文献+

常利率古典风险模型下的一个积分微分方程 被引量:1

An Integro-differential Equation in the Classical Risk Process with Constant Interest Force
下载PDF
导出
摘要 考虑带常利率古典风险模型下的边界分红问题,给出了期望折现分红函数满足的积分-微分方程,并利用killing过程的观点给出了进一步的解释. The barrier strategy for the classical risk process with constant interest force is considered. The Integro-differential equation which is satisfied by the expectation of aggregate discounted dividends is given, a further explanation in the point view of killing process is involved.
作者 马建静
出处 《曲阜师范大学学报(自然科学版)》 CAS 2008年第2期27-29,共3页 Journal of Qufu Normal University(Natural Science)
关键词 常利率古典风险模型 边界分红 期望折现分红 classical risk process with constant interest force barrier strategy expectation of aggre-gate discounted dividends
  • 相关文献

参考文献4

  • 1Finetti D B. 'Su un' impostazione alternativa dell teoria collettiva del rischio[J]. Transaction of the XVth International Congress of Actuaries, 1957, 2: 433-443.
  • 2Sundt B, Teugels J L. Ruin estimates under interest force[J]. Insurance: Mathematics and Economics, 1995, 16:7-22.
  • 3Protter P. Stochastic Integration and Differential Equations:A New Approach[M]. Berlin:Springer, 1992. 238.
  • 4吕玉华,徐润,孔祥忠.资产与负债为几何布朗运动的风险模型的破产概率及最值分布(英文)[J].曲阜师范大学学报(自然科学版),2004,30(4):1-5. 被引量:1

二级参考文献5

  • 1Gerber H U, Shiu E S W. Geometric Brownian motion model for assets and liabilities: from pension funding to optimal dividends [J]. North American Actuarial Journal, 2003, 7(3):37~51.
  • 2Revuz D, Yor M. Continuous martingales and Brownian motion [M]. Berlin:Springer, 1991.
  • 3Ross S M. Stochastic processes [M]. Singapore:John Wiley and Sons,1983.
  • 4Siegmund D. Boundary crossing probabilities and statistical applications [J]. Ann Statist, 1986, 14:361~404.
  • 5Lin X D. Geometric Brownian motion model for assets and liabilities: from pension funding to optimal dividends [J]. North American Actuarial Journal, 2003, 7(3):51~53.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部