期刊文献+

时滞系统稳定性分析:一种积分等式方法 被引量:3

Stability analysis of time-delay systems:An integral-equality approach
下载PDF
导出
摘要 提出一种积分等式方法研究时滞系统稳定性问题.该方法是已有积分不等式方法的改进.结合自由权矩阵构建积分等式,且自由权矩阵的选取由Lyapunov-Krasovskii泛函的导数确定,从而在稳定条件的推导过程中,不引入任何模型转换及限界方法.基于该方法,可得到具有更低保守性的稳定条件.仿真例子说明了所提方法的有效性. An integral-equality approach is presented to study the stability of time-delay systems, which is an improved version of the integral inequality and is constructed with free weighting matrices. The free terms are chosen according to the derivative of the Lyapunov-Krasovskii employed. As a result, neither model transformation nor bounding technique is introduced during the stability analysis. Less conservative stability criteria can be obtained based on the proposed approach. Numerical examples show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2008年第4期473-476,共4页 Control and Decision
基金 国家863计划项目(2003AA517020)
关键词 时滞系统 稳定性 线性矩阵不等式 LYAPUNOV-KRASOVSKII泛函 Time-delay systems Stability Linear matrix inequality Lyapunov-Krasovskii functional
  • 相关文献

参考文献8

  • 1Zhang X M, Wu M, She J H, et al. Delay-dependent stabilization of linear systems with time varying state and input delays [J]. Automatica, 2005, 41 (8): 1405-1412.
  • 2Moon Y S, Park P, Kwon W H, et al. Delay-dependent robust stabilization of uncertain state-delayed systems [J] Int J of Control, 2001, 74(14) : 1446-1455.
  • 3He Y, Wu M, She J H, et al. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties [J]. IEEE Trans on Automatic Control, 2004, 49(5): 828-832.
  • 4Gu K, Kharitonov V L, Chen J. Stability of time-delay systems[M]. Boston: Brikhauser, 2003.
  • 5Yue D, Han Q L, Lam J. Network-based robust H∞ control of systems with uncertainty [J]. Automatica, 2005, 41(4): 999-1007.
  • 6Yue D, Han Q L. Delayed feedback control of uncertain systems with time-varying input delay[J]. Automatica, 2005, 41(2): 233-240.
  • 7Gu K. Partial solution of LMI in stability problem of time-delay sysems[C]. Proc of the 38th IEEE Conf on Decision and Control. Phoenix, 1999: 227-232.
  • 8Boyd S, Ghaoui L, Feron E, et al. Linear matrix inequalities in system and control theory [M]. Philadelphia PA: SIAM, 1994.

同被引文献30

  • 1KWON H K, MOON Y S, SAM Y,et al. Delay-dependent robust stabilization of uncertain state--delayed systems[J]. INT. J. Control,2001, 74(14) :1447-1455.
  • 2DONG Yue, HAN Qing-long. Delayed feedback control of uncertain systems with tlme-varying input delay[J]. Automatica, 2005, 41:233-240.
  • 3YONG He, WANG Qing-guo, XIE Li--hua, et al. Further Improvement of Free--Weighting. Matrices Technique for Systems With Time-Varying Delay[J]. IEEE Transactions on Automatic Contrlol, 2007, 52(2):293-299.
  • 4LI T, GUO L, LIN C. A new eritertion of delay--dependent stability for uncertain time-delay Systems[J]. IET Control Theory Appl, 2007, 1(3) :611-616.
  • 5YANG R,SHI P,GAO H. New delay--dependent stability criterion for stochastic systems with time delays[J]. The Institution of Engineering and Technology, 2008,2 (11) : 966 - 973.
  • 6Decarlo R A, Branicky M S, Pettersson S. Perspectives and resuits on the stability and stabilizability of hybrid systems. Proc IEEE, 2000, 88(7) : 1069.
  • 7Ooba T, Funahashi Y. On a common quadratic Lyapunov function for widely distant systems. IEEE Trans Autom Control, 2003, 42 (12) :1697.
  • 8Yu L, Liberzon D. Common Lyapunov functions for families of commuting nonlinear systems. Syst Control Lett, 2005,54 ( 5 ) : 405.
  • 9Balluchi A, Di Bnedetto M D, Ponello C, et al. Hybrid control in automotive applications: the cut-off control. Automatica, 1999, 35:519.
  • 10Momeni A, Agndam A G. Switching control for time-delay systems //Proceedings of the 2006 American Control Conference. Minneapolis, 2006:5432.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部