期刊文献+

紫花苜蓿Na^+/H^+逆向转运蛋白基因在拟南芥中表达提高转基因植株的耐盐性 被引量:20

Expression of a Vacuolar Na^+/H^+ Antiporter Gene of Alfalfa Enhances Salinity Tolerance in Transgenic Arabidopsis
下载PDF
导出
摘要 以紫花苜蓿(Medicago sativa)为材料,利用反转录PCR方法分离了NHX1全长cDNA(命名为MsNHX1)。Southern杂交结果表明,在紫花苜蓿中存在一个小的液泡型Na+/H+逆向转运蛋白基因家族。序列分析表明,该基因所编码的蛋白与拟南芥、水稻和棉花中液泡型Na+/H+逆向转运蛋白具有较高的同源性。在洋葱表皮细胞中瞬时表达MsNHX1-GFP融合基因的结果表明,MsNHX1定位在液泡膜上。Northern杂交发现该基因的表达受高浓度NaCl诱导。MsNHX1在盐敏感酵母突变体中表达可以提高转化子对NaCl的耐受性,说明MsNHX1具有转运Na+的功能。在拟南芥中表达MsNHX1能显著提高植株耐受盐胁迫的能力;而且在受到盐胁迫时,转基因植株比野生型的渗透调节能力更强,生物膜受破坏程度降低,光合能力增强。以上研究结果表明MsNHX1是一个液泡膜Na+/H+逆向转运蛋白,在植物耐受盐胁迫过程中起重要作用。 Plant Na^+/H^+ antiporters play an important role in salt tolerance. An alfalfa (Medicago sativa) full length cDNA (named as MsNHX1) was isolated by RT-PCR according to the homologous region of plant Na^+/H^+ antiporter genes. Southern blot analysis revealed that there was a small antiporter gene family in alfalfa genome. Sequence analysis indicated that MsNHX1 shared high homology with other vacuolar Na^+/H^+ antiporters. Transient transfection of MsNHX1-GFP fusion gene revealed that MsNHX1 targeted to vacuolar membrane. The transcription of MsNHX1 was up-regulated after high salinity treatment. Furthermore, the expression of MsNHX1 in yeast partly suppressed the salt-sensitive phenotype of yeast Na^+/H^+ antiporter mutant, indicating that MsNHX1 was a functional Na^+/H^+ antiporter of alfalfa. The physiological analysis revealed that the expression of MsNHX1 in Arabidopsis enhanced the resistance of transgenic plants to salt stress. These results suggest that MsNHX1 is a vacuolar Na^+/H^+ antiporter and functions in salt tolerance of plants.
出处 《作物学报》 CAS CSCD 北大核心 2008年第4期557-564,共8页 Acta Agronomica Sinica
基金 国家转基因植物研究与产业化开发专项项目(JY-03-A-02) 国家高技术研究发展计划(863计划)项目(2004AA212131)
关键词 紫花苜蓿 NA^+/H^+逆向转运蛋白基因 拟南芥 耐盐性 Alfalfa Na^+/H^+ antiporter gene Arabidopsis Salt tolerance
  • 相关文献

参考文献30

  • 1Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 2005, 16:123-132
  • 2Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001,2:66-71
  • 3Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells. Biochim Biophys Acta, 2000, 1465:140-151
  • 4Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51 : 463-499
  • 5Xiong L, Zhu J K. Salt tolerance. In: Somerville C, Meyerowitz E. The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, DOI: 10.1199/tab.0009, 2002, http://www.aspb.org/publications/arabidopsis/
  • 6Apse M P, Aharon G S, Snedded W A, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na^+/H^+ antiporter in Arabidopsis. Science, 1999, 285:1256-1258
  • 7Yokoi S, Quintero F J, Cubero B, Ruiz M T, Bressan R A, Hasegawa P M, Pardo J M. Differential expression and function of Arabidopsis thaliana NHX Na^+/H^+ antiporters in the salt stress response. Plant J, 2002, 30:529-539
  • 8Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na^+/H^+ exchanger gene in Oryza sativa. Biochim Biophys Acta, 1999, 1446:149-155
  • 9Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T. Isolation and characterization of a Na^+/H^+ antiporter gene from the hatophyte Atriplex gmelini. Plant Mol Biol, 2001, 46:35-42
  • 10Wu C A, Yang G D, Meng Q W, Zheng C C. The cotton GhNHX1 gene encoding a novel putative tonoplast Na^+/H^+ antiporter plays an important role in salt stress. Plant Cell Physiol, 2004 45:600-607

二级参考文献15

  • 1Zhu J K. Genetic analysis of plant salt tolerance using arabidopsis [J]. Plant Physion, 2000,124: 941-948
  • 2Liang P, Averboukh L, Pardee A B. Distribution and cloning of eukaryotic mRNAs by means of differential display[J]. Nucleic Acids Res. , 1993, 21:14 3269-3275
  • 3Deutch C E, Winicov I. Post-transcriptional regulation of a saltinducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein[J]. Plant-Molecular-Biology, 1995, 27: 411-418
  • 4Winicov I, Deutch C E. Characterization of genes for photosynthesis transcription to salt tolerance of alfalfa cells[J]. Plant Cell Physiol, 1994,31:1155-1161
  • 5Safarnejad A, Collin H A, Bruce K D, et al. Characterization of alfalfa (Medicago sativa L. ) following in vitro selection for salt tolerance. Springer Science+Business media B. V. 1996, 92(2):55-61
  • 6Winicov I, Bastola D R. Salt tolerance in crop plants: new approaches through tissue culture and gene regulation, molecular biology of plants under environmental stress, Proceedings of an international conference, Poznan, Poland, 17 ~ 19, ActaPhysiologiae-Plantarum, 1997, 19 : 4, 435-449
  • 7Ginzberg I, Stein H, Kapulnik Y. Isolation and characterization of two different cDNAs of Delta (1)- pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress[J].Plant Molecular Biology, 1998, 38(5): 755-764
  • 8Litter C H A, Eidt D C. Effect of abscisic acid on bud break and transpiration in woody species [J]. Nature, 1968, 220: 489-499
  • 9Luo M, Lin L H, Hill R D, et al. Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein [J].Plant Mol Biol. ,1991, 17(6) :1267-1269
  • 10Luo M, Liu J H, Mohapatra S. Characterization of a gene family encoding abscisic acid and environmental stress-inducible proteins of alfalfa[J]. J Biol Chem. , 1992, 267(22) : 15367-15374

共引文献54

同被引文献368

引证文献20

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部