期刊文献+

基于Bro的蠕虫检测系统设计及实现 被引量:1

Design and Implementation of Bro-based Worm Detection System
下载PDF
导出
摘要 在分析蠕虫传播机制基础上,基于入侵检测系统Bro的整体框架,以基于FCC(First Contact Connections,第一次连接)失败概率和重尾特性的蠕虫检测算法为核心,设计并实现了基于Bro的蠕虫检测系统。该系统对Bro的策略脚本解释器进行扩充,实现上述检测算法的策略脚本,将检测结果输出到共享内存,基于SNMP协议,将检测结果传送至监视端,方便用户对网络蠕虫的实时监视。该系统能够迅速准确地检测出网络上的蠕虫主机。 Based on the analysis of worm propagating mechanism and the framework of Bro--an intrusion detection system, the Bro-based worm detection system is designed and implemented. The failure frequency of FCC (First Contact Connections) and heavy-tailed property based worm detection algorithm is used as the kernel of the detection system. The detecting system extends the policy script interpreter of Bro, which sends the detecting results to the share memory based on the implementation of the policy script of the detecting algorithm. The results in the share memory are then sent to the monitor based on the SNMP, which is convenient for real-time monitoring the network worms. The worm detection system can detect network worm hosts quickly and accurately.
出处 《湖北汽车工业学院学报》 2008年第1期29-32,共4页 Journal of Hubei University Of Automotive Technology
基金 湖北省自然科学基金项目(2006ABA039) 湖北省教育厅科学研究计划项目(D200623002)
关键词 蠕虫检测 BRO 第一次连接 重尾特性 worm detection Bro First Contact Connections heavy-tailed property
  • 相关文献

参考文献10

  • 1CERT/CC. CERT Advisory CA-2003-04 MS-SQL server worm. http://www.cert. org/ advisories/ CA - 2003-04. html
  • 2Chen Shigang, Tang Yong. Slowing Down Internet Worms [C]. Proc. of 24th International Conference on Distributed Computing Systems,Tokyo, Japan, 2004.
  • 3文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 4蒋建春,马恒太,任党恩,卿斯汉.网络安全入侵检测:研究综述[J].软件学报,2000,11(11):1460-1466. 被引量:370
  • 5Snort. http://www.snort.org
  • 6Bro intrusion detection system, http://bro-ids.org/
  • 7Stuart Staniford, Vern Paxsony, Nicholas Weaver. How to own the Internet in your spare time [C]. Proc. of the USENIX Security Symposium, 2002:149-167.
  • 8Will E. Leland, Walter Willinger, Murad S. Taqqu, et al. On the self-similar nature of Ethernet traffic. Computer Communication Review[J], 1995, 25(1): 202-213.
  • 9Chen Yufeng, Dong Yabo, Lu Dongming, et al. Research of Characteristics of Worm Traffic [C]. Proc. of Intelligence and Security Informatics, Lecture Notes in Computer Science, v3073, 2004:518-519.
  • 10Chen Yufeng, Dong Yabo, Lu Dongming, et al. Detecting Randomly Scanning Worms Based on Heavy-Tailed Property [C]. Proc. of 2005 IEEE International Conference on Networking, Sensing and Control, 2005: 354-358.

二级参考文献10

共引文献553

同被引文献12

  • 1邓智群,刘福,慕德俊,唐三平.网络隔离体系结构研究[J].计算机应用研究,2005,22(5):219-221. 被引量:21
  • 2孙知信,唐益慰,张伟,宫婧,王汝传.基于特征聚类的路由器异常流量过滤算法[J].软件学报,2006,17(2):295-304. 被引量:15
  • 3王平,方滨兴,云晓春.基于分割的蠕虫传播抑制方法[J].北京邮电大学学报,2006,29(5):24-27. 被引量:1
  • 4ARP spoofing and dsniff a tutorial[EB/OL], http://duseeurity. com/tutorials/tutorials/ARP_SPOOFING_WIN.pdf.
  • 5Chen Yufeng,Dong Yabo,Lu Dongming,et al.Detecting randomly scanning worms based on heavy-tailed property[C].Proc of 2005 IEEE International Conference on Networking, Sensing and Control,2005:354-358.
  • 6国家计算机网络应急技术处理协调中心.CNCERT/CC2007年网络安全工作报告[EB/OL].http://www.cert.org.on/articles/docs/common/2008040823865.shtml,2008.
  • 7David Moore,CoUeen Shannon,Geoffrey M Voelker, et al.Intemet quarantine:Requirements for containing self-propagating code[C].Proc of IEEE INFOCOM Conference,2003.
  • 8E-Gap WebSite. Products and technology: E-Gap application fire-wall[EB/OL].http://www.whalecommunications.com,2003.
  • 9Rechard Stevens W.TCP/IP详解卷1[M].北京:机械工业出版社,1993.
  • 102007年全国信息网络安全状况与计算机病毒疫情调查分析[J].信息网络安全,2007(10):1-2. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部