摘要
利用Fourier级效理论,伯努利数理论和重合度理论研究了一类具分布时滞的高阶泛函微分方程x^(m)(t)+f(x^(m-1)(t))+g(∫_(-r)~0 x(t+s)da(s))=p(t)的周期解问题,得到了周期解存在的一些新结果。
By using the theory of Fourier series, Bernoulli number theory and continuation theory of coincidence degree theorem, we study a kind of high-order functional differential equation with distributed delay as follows: x^(m)(t)+f(x^(m-1)(t)+g(∫-r^0x(t+s)da(s))=p^(t)Some new results on the existence of periodic solutions are obtained.
出处
《数学研究》
CSCD
2008年第1期13-23,共11页
Journal of Mathematical Study
基金
the NSF of Anhui Province of China(2005kj031ZD:2004kj166zd:050460103)
Teaching and Rescarch Award Program for Excellent Teachers in Higher Education Institutions of Anhui Province of China
关键词
高阶
泛函微分方程
重合度
周期解
Periodic solution
High-order
Functional differential equation
Coincidence degree theory