期刊文献+

对称双随机矩阵逆特征值问题 被引量:1

Inverse Eigenvalue Problems for Symmetric Doubly Stochastic Matrices
下载PDF
导出
摘要 主要研究随机矩阵逆特征值问题,特别是对称双随机矩阵和列随机矩阵逆特征值问题.对参考文献[1]与[2]的结论作了一些推广,并给出了—个数值例子. In this paper, we mainly discuss the inverse eigenvalue problems for stochastic matrices, especially for symmetric doubly stochastic matriccs and cohunn stochastic matrices. We extend some results of [1], [2] and give an numerical example.
作者 林秀丽
出处 《数学研究》 CSCD 2008年第1期39-43,共5页 Journal of Mathematical Study
基金 国家自然科学基金(10531080)
关键词 逆特征值问题 非负矩阵 随机矩阵 列随机矩阵 对称双随机矩阵 Inveme eigenvalue problems Nolmegative matrices: Stochastic matrices Colunm'stodlas^icmatrices Symmetric doubly symmetric matrices
  • 相关文献

参考文献6

  • 1Berman A and Plemmons R J.Nonnegative matrices in the mathematical sciences.New York:Academic Press,1979.
  • 2Alberto Borobia.On the nonnegative eigenvalne problem.Linear Algebra Appl.1995,(223-224):131-140.
  • 3Loewy R, London D. A note on an inverse problem for nolmegative matrices. Linear Multilinear Algebra, 1978, (6): 83-90.
  • 4Linzhang Lu, Michael K Ng. On sufficient and necessary conditions for the Jacobi inverse eigenvalue problem. Numer. Math., 2004, 98: 167-176.
  • 5Reams R. An inequality for nonnegative and the inverse eigenvalue problem. Linear Multilinear Algebra, 1996, 41: 367-375.
  • 6Laffey T, Meehan E. A characterization of trace zero nonnegative 5×5 matrices. Linear Algebra Appl., 1999, 302-303: 295-302.

同被引文献5

  • 1Soto R. Existence and construction of nonnegative matrices with prescribed spectrum [ J ]. Linear Algebra Appl,2003 (369) : 844 - 856.
  • 2Egleston P, Lanker T, Narayan S. The nonnegative inverse eigenvalue problem [ J ]. Linear Algebra Appl,2004 (379) :475 - 490.
  • 3Soto R, Rojo O. Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem [ J ]. Linear Algebra Appl, 2006(416) :169 - 184.
  • 4周硕,吴柏生.广义双随机矩阵反问题及其应用[J].数学的实践与认识,2008,38(15):142-148. 被引量:1
  • 5杨尚俊.行随机矩阵的逆特征值问题[J].安徽大学学报(自然科学版),2010,34(3):1-4. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部