期刊文献+

基于MSP秘密共享的(t,n)门限群签名方案 被引量:3

A (t,n) Threshold Group Signature Scheme Based on MSP Secret Sharing
下载PDF
导出
摘要 门限群签名是群签名中重要的一类,它是秘钥共享与群签名的有机结合.本文通过文献[5]中的MSP方案(Monotone Span Program),提出了一种新的门限群签名方案.在本签名方案建立后.只有达到门限的群成员的联合才能生成一个有效的群签名.并且可以方便的加入或删除成员.一旦发生争议.只有群管理员才能确定签名人的身份.该方案能够抵抗合谋攻击:即群中任意一组成员合谋都无法恢复群秘钥k.本方案的安全性基于Gap Diffie-Hellman群上的计算Diffie-Hellman问题难解上.因此在计算上是安全的. In this paper, a new (t, n) threshold group signature scheme is proposed based on Montone Span Programs. Wimn the scheme is built, a set of members whose number is ,aver the threshold can make a valid group signature. When the dispute occupys, signer. The schenm can withstand conspiracy attacks. of the computational Diffie-Hellman(CDH) problems. only the authority can determine who is the real The security of tiffs scheme is based on the harness Therefore, the schemes is secure for calculation.
出处 《数学研究》 CSCD 2008年第1期65-71,共7页 Journal of Mathematical Study
基金 国家自然科学基金(10371032)
关键词 门限群签名 MSP秘钥共享方案 Gap Diffie-Hellman群(GDH群) threshold group signature monotone span programs secret sharing Gap Diffie-Hellman group
  • 相关文献

参考文献11

  • 1Ghaum D, Van E Heyst. Group Signatures Proc of Euprocrypt'91. Lecture Notes in Computer Science, 1991, 547: 257-265.
  • 2Desmedt Y, Frankel Y. Shared Generation of Authenticators and signatures. In: Feigenbaum J eel Advances in cryptology -crypto'91. Proceedings Berlin: Springer-Verlag, 1992, 457-469.
  • 3Zi-Chen Li, Jun-Mei Zhang. Jun Luo, Willam Song and Yi-Qi Dai. Group -Oriented (t, n) Threshold Digital Signature Scheme with traceable Signers. Springer-Verlag Berlin Heidelberg 2001.57-69.
  • 4Boneh D. Lynn B and Snacham H. Short Signatures from the Weil Pairing. In Proceedings of Asiacrypt 2001, volume 2248 of LNCS. Sprhlger-Verlag. Berlin, 2001, 514-532.
  • 5Diploma Thesis SS98, Sara Radomirovic. Investigation Into Span Programs with Multiplication 1-61. Dr.U.Mauren Institute for Theoretical Computer Science ETH Zurich.
  • 6马春波,何大可.矢量空间秘密共享群签名方案[J].电子学报,2005,33(2):294-296. 被引量:8
  • 7陈泽文,张龙军,王育民,黄继武,黄达人.一种基于中国剩余定理的群签名方案[J].电子学报,2004,32(7):1062-1065. 被引量:56
  • 8王贵林,卿斯汉.几个门限群签名方案的弱点[J].软件学报,2000,11(10):1326-1332. 被引量:61
  • 9Karchmer M and Wigderson A. On Span Programs. In Proceedings of the 8th Annual Structure ill Complexity Theory, 1993, 102-111.
  • 10Joseph Halpern, Vanessa Teague. Rational Secret Sharing and Multiparty Computation: Extended Abstract. STOC'04 Jun 13-15 Chicago.

二级参考文献25

  • 1Tseng Y M,Inform Process Lett,1999年,71卷,1期,1页
  • 2Wang C T,Computer Communications,1998年,21卷,8期,771页
  • 3Lu Langru,Advances in Cryptology-China CRYPT'96,1996年,177页
  • 4Li C,Advances in Cryptology-Eurocrypt'94 Proceedings,1995年,194页
  • 5Li C,Advances in Cryptology-Crypto'93 Proceedings,1993年,413页
  • 6CHAUM D,HEYST V E.Group signatures[A].Processdings of EUROCRYPT'91.Lecture Notes in Computer Science[C].Berlin:Springer Verlag,1991.547:257-265.
  • 7CAMENISH J,STADLER M.Efficient group signatures for large groups[A].Proceedings of CRYPTO'97,Lecture Notes in Computer Science[C].Berlin:Springer-Verlag,1997.1296:410-424.
  • 8CAMENISH J,STADLER M.A group signature scheme with improved efficiency[A].Proceedings of ASIACRYPT'98,Lecture Notes in Computer Science[C].Berlin:Springer-Verlag,1998.1541:160-174.
  • 9CHEN L,PEDERSEN T.New group signature schemes[A].Proceedings of EUROCRYPT'94,Lecture Notes in Computer Science[C].Berlin:Springer-Verlag,1995.950:171-181.
  • 10PADRO C,SAEZ G.Detection of cheaters in vector space secret sharing schemes[J].Desings,codes and Cryptography,1999,16(1):75-85.

共引文献119

同被引文献21

  • 1陈泽文,张龙军,王育民,黄继武,黄达人.一种基于中国剩余定理的群签名方案[J].电子学报,2004,32(7):1062-1065. 被引量:56
  • 2马春波,何大可.矢量空间秘密共享群签名方案[J].电子学报,2005,33(2):294-296. 被引量:8
  • 3汤学明,洪帆,崔国华.辫子群上的公钥加密算法[J].软件学报,2007,18(3):722-729. 被引量:12
  • 4黄东平,刘铎,戴一奇.加权门限秘密共享[J].计算机研究与发展,2007,44(8):1378-1382. 被引量:9
  • 5SHAMIR A. How to share a secret[J].Communications of the ACM,1979,(11):612-613.
  • 6BLAKLEY G. Safeguarding cryptographic keys[A].New York:AFIPS Press,1979.313-317.
  • 7刘木兰;张志芳.密钥共享体制和安全多方计算[M]北京:电子工业出版社,2008.
  • 8CRESCENZO G D,GALDI C. Hypergraph decomposition and secret sharing[J].Discrete Applied Mathematics,2009,(05):928-946.doi:10.1016/j.dam.2008.04.001.
  • 9STINSON D R;冯登国.密码学原理与实践[M]北京:电子工业出版社,2009.
  • 10贝尔热C;卜月华;张克民.超图——有限集的组合学[M]南京:东南大学出版社,2002.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部