期刊文献+

Littlewood-Paley算子的多线性交换子在块Hardy空间上的加权有界性

Weighted Boundedness for Multilinear Littlewood-Paley Commutator on Some Block-Hardy Spaces
下载PDF
导出
摘要 本文定义了一类与Littlewood—Paley算子相关的多线性交换子,然后利用Hardy空间的原子分解和块空间的块分解方法证明了这类多线性交换子在块—Hardy空间上的加权有界性。 In this paper, some multilinear operators related to the Littlewood-Paley operators are defined, and the weighted boundedness for the multilinear operators on some Block-Hardy spaces are obtained by using the atomic and block decomposition of the spaces.
作者 易涤尘
出处 《湖南科技学院学报》 2008年第4期24-27,共4页 Journal of Hunan University of Science and Engineering
关键词 多线性算子 Littlewood—Paley算子 HARDY空间 BMO空间 A1权 Multilinear operator Littlewood-Paley operator Hardy space BMO space A1 weigh.
  • 相关文献

参考文献7

  • 1Torchinsky A. The real variable methods in harmonic analysis[M]. New York: Pure and Applied Math., 123, Academic Press, 1986.
  • 2Liu LZ. Weighted weak type (H 1, L 1) estimates for commutators of Littlewood-Paley operators[J], Indian J.of Math., 2003,45(1): 71-78.
  • 3Liu LZ. Continuity for commutators of Littlewood-Paley operators on certain Hardy spaces, J.Korean Math.Soc., 2003,40(1):41-60.
  • 4Perez C, et al. Sharp weighted estimates for multilinear commutators, J. London Math .Soc., 2002, 65(4), 672-692.
  • 5Komori Y. Weighted Hardy spaces estimates for commutators of singular integral operators[J]. Far East J. Math. Sci., 2001, 3(6): 889-898.
  • 6Garcia-Cuerra J, et al. Weighted norm inequalities and related topics[M]. Amsterdan: North-Holland Math. Studies, 1985 , Vol.116.
  • 7Stein EM, et al. On convergence of Poisson integrals[J]. Trans. Amer. Math. Soc., 1969, 140(1): 35-54.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部