期刊文献+

甜菊醇糖苷生物合成及关键酶研究进展 被引量:11

Advances on the Steviol Glycoside Biosynthesis and Its Key Enzymes
下载PDF
导出
摘要 甜菊醇糖苷(steviol glycosides,SGs)是甜叶菊(Stevia rebaudian)叶片中一类天然甜味剂,具有高甜度、低热量、无毒副作用等特点,同时还具有一定的药理作用。植物体内主要是通过甲基赤藓糖醇(MEP)途径形成牻牛儿牻牛儿焦磷酸(GGPP),之后该物质在古巴焦磷酸合酶(CPPS)、贝壳杉烯合酶(KS)、贝壳杉烯氧化酶(KO)、糖菊苷转移酶(UGTs)等一系列结构功能各异的酶的作用下最终生成甜菊醇糖苷。SGs生物合成途径的调控及该途径中关键酶的研究已成为目前国内外生物学领域的一大热点。综述了甜叶菊SGs生物合成途径和参与该途径中的关键酶及其基因的研究进展,并展望了其应用前景。 Steviol glycoside is the mixture of natural sweeteners extracted from leaves of Stevia rebaudian (Bertoni) Bertoni, Steviol glycosides have intense sweetness but non-calorific and no toxicity, And steviol glycosides show some degree of pharmacological effects. The precursor ofstevioside, geranylgeranyl pyrophosphate (GGPP), is formed via the recently discovered 2- C-methyl-d-erythritol-4-phosphate pathway. GGPP is converted to steviol glycosides by a series of enzymes involved copalyl pyrophosphate synthase, kaurene synthase, kaurene acid 13-hydroxylase, UDP-glycosyltransferases et al. This article reviews steviol glycosides biosynthetic pathway of Stevia rebaudian and key enzymes and their research foreground
出处 《生物技术通报》 CAS CSCD 2008年第2期48-53,共6页 Biotechnology Bulletin
关键词 甜叶菊 甜菊醇糖苷 生物合成 关键酶 Stevia rebaudian Steviol glycosides Biosynthetic pathway Key enzymes
  • 相关文献

参考文献26

  • 1Kovylyaeva GI, Bakaleinik GA, Strobykina IYu, et al. Chemistry of Natural Compounds, 2007, 43( 1 ):81-85.
  • 2Hsieh MH,et al. Clin Ther, 2003, 25( 11 ):2797-2808.
  • 3Gregersen S,et al.Metab Clin Exp, 2004, 53( 1 ):73-76.
  • 4Geuns JMC, Buyse J, Vankeirsbilck A, et al.Exp Biol Med, 2007, 232( 1 ):164-173.
  • 5Brandle JE, et al. Phytoehemistry, 2007, 68 ( 14 ): 1855-1863.
  • 6Shibata H ,et al. Plant Physiol, 1991,95( 1 ):152-156.
  • 7Shibata H, et al.Arch Biochem Biophys, 1995,321 (2), 390-396.
  • 8Richman A, et al.Plant J, 2005,41 ( 1 ) :56-67.
  • 9石琰璟,沙广利,束怀瑞.赤霉素生物合成及其分子机理研究进展[J].西北植物学报,2006,26(7):1482-1489. 被引量:25
  • 10王金祥,李玲,潘瑞炽.高等植物中赤霉素的生物合成及其调控[J].植物生理学通讯,2002,38(1):1-8. 被引量:35

二级参考文献44

  • 1潘瑞炽 余叔文 等.赤霉素的生物合成、代谢和作用机理.植物生理与分子生物学(第2版)[M].北京:科学出版社,1998.439.
  • 2赵文恩 崔艳红 李艳杰 杨丽.Analysis of carotenoids in different variety of watermelon[J].China Watermelon and Muskmelon,2004,.
  • 3HELLIWELL C A,CHANDLER P M,POOLE A,DENNIS E S,PEACOCK W J.The CYP88A cytochrome P450,ent-kaurenoic acid oxidase,catalyzes three steps of the gibberellin biosynthesis pat hway[J].Proc.Natl.Acad.Sci.USA,2001,98 (4):2065-2070.
  • 4INGRAM T J,REID J B.Internode length in Pisum L.Gene na may block gibberellin synthesis between ent-7-alpha-hydroxykaurenoic acid and gibberellin A12-aldehyde[J].Plant Physiol.,1987,83:1048-1053.
  • 5DAVIDSON S E,ELLIOTT R C,HELLIWELL C A.POOLE A T,REID J B.The pea gene NA encodes ent-kaurenoic acid oxidase[J].Plant Physiol.,2003,131(1):335-344.
  • 6THEOL.Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichiacoli[J].Proc.Natl.Acad.Sci.USA,1997,94(12):6553-6558.
  • 7XU Y L,LI L,WU K,PEETERS A J M,GAGE D A,ZEEVAART J A D.The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase:molecular cloning and functional expression[J].Proc.Natl.Acad.Sci.USA,1995,12(1):6640-6644.
  • 8MEIER C,BOUQUIN T,NIELSEN M E,RAVENTOS D,MATTSSON O,ROCHER A,SCHOMBURG F,AMASINO R M,MUNDY J.Gibberellin response mutants identified by luciferase imaging[J].Plant J.,2001,25(5):509-519.
  • 9TALON M,KOORNNEEF M,ZEEVAART J A D.Endogenous gibberellinsin Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semi-dwarf ga4 and ga5 mutants[J].Proc.Natl.Acad.Sci.USA,1990,87(20):7983-7987.
  • 10CHIANG H H,H WANG I,GOODMAN H M.Isolation of the Arabidopsis GA4 locus[J],plant Cell,1995,7(2):195-201.

共引文献85

同被引文献178

引证文献11

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部