期刊文献+

时间测度上一些种群动力学方程的周期解 被引量:4

Periodic Solutions of Several Population Dynamic Equations on Time Scales
原文传递
导出
摘要 在时间测度上研究一些具有时滞的种群动力学系统,利用Mawhin重合度理论建立了这一类抽象型系统的正周期解存在的充分性条件,从而使这些种群动力学模型的连续和离散时间情形,即微分方程和差分方程得到了统一研究.将所得到的结论可以应用到很多具体的生物数学模型上. Several population dynamic systems with time delays are studied on time scales. By using the continuation theorem based on coincidence degree theory, Sufficient criterion are established for the existence of positive periodic solutions of the class systems, which has been unified and extensively applied in studying existence problems of these population models in differential equations and difference equations.
作者 刘振杰
出处 《数学的实践与认识》 CSCD 北大核心 2008年第7期170-174,共5页 Mathematics in Practice and Theory
基金 黑龙江省教育厅科学技术研究项目(11513043) 哈尔滨学院学科发展研究基金资助项目(HXK200716)
关键词 时间测度 种群动力学方程 时滞 重合度 周期解 time scale population dynamic equation time delay coincidence degree periodicsolution
  • 相关文献

参考文献13

  • 1Fan M, Agarwal S. Periodic solutions for a class of discrete time competition systems[J]. Nonlinear Stud,2002, 9(3):249-261.
  • 2Li W T, Huo H F. Positive periodic solutions of delay difference equations and applications in population dynamics[J].J Comp Appl Math, 2005,176 : 357-369.
  • 3Huo H F. Periodic solutions for a semi-radio-dependent predator-prey system with functional response[J]. Appl Math Lett, 2005,18 : 313-320.
  • 4Fan M, Kuang Y. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2004,295: 15-39.
  • 5Zhang J, Wang J. Periodic solutions for discrete predator-prey systems with the Beddington-DeAngelis functional response[J]. Appl Math Lett, 2006,19 : 1361-1366.
  • 6Bohner M, Peterson A. Dynamic Equations on Time Scales, At: Introduction with Applications[M]. Birkhauser, Boston, 2001.
  • 7Bohner M, Fan M, Zhang J. Existence of periodic solutions in predator-prey and competition dynamic systems[J]. Nonlinear Anal Real World Appl, 2006,7: 1193-1204.
  • 8Zhang B G, Gopalsamy K. Global attractivity and oscillation in a periodic delay Logistic equation[J]. J Math Anal Appl, 1990,150: 274-283.
  • 9Elabbasy E M, Saker S H, Sail K. Oscillation of nonlinear delay differential equations with application to models exhibiting the Allee effect[J]. Far East J Math Sci, 1999,1 (4): 603-620.
  • 10Gopalsamy K, Kulenovic M R S, Ladas G. Environmental periodicity and time delays in a "food-limited" population model[J]. J Math Anal Appl,1990,147 : 545-555.

二级参考文献1

共引文献34

同被引文献44

  • 1刘双,李海龙.用差分方程模型模拟北京2003年SARS疫情[J].生物数学学报,2006,21(1):21-27. 被引量:11
  • 2Hilger S. Analysis on measure chains A unified approach to continuous and discrete calculus[J]. Results in Mathematics, 1990, 18: 18-56.
  • 3Bohner M, Peterson A. Dynamic equations on time scales, an introduction with applications[M]. Boston: Birkhauser, 2001.
  • 4Agarwal R P, Bohner M, O'Regan D, et al. Dynamic equations on time scales: A survey [J]. Journal of Computational and Applied Mathematics, 2002, 141(1-2): 1-26.
  • 5Zhang B G, Deng X H. Oscillation of delay differential equations on time scales [J]. Computational Mathematics and Modeling, 2002, 36 (11): 1307-1318.
  • 6Agarwal R P, Bohner M, Saker S H. Oscillation of second order delay dynamic equations [J]. Canadian Applied Mathematics Quarterly, 2005, 13(1): 1-18.
  • 7Sahiner Y. Oscillation of second order delay differential equations on time scales [J]. Nonlinear Analysis, Theory, Methods & Applications, 2005, 63: 1073-1080.
  • 8Zhang B G, Zhu S L. Oscillation of second order nonlinear delay dynamic equations on time scales[J]. Computers & Mathematics with Applications, 2005, 49 (4): 599-609.
  • 9Hilger S.Analysis on measure chains:A unified approach to continuous and discrete calculus[J].Results Math,1990,18:18-56.
  • 10Bohner M,Peterson A.Dynamic Equations on Time Scales,an Introduction with Applications[M].Boston:Birkhauser,2001.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部