摘要
在时间测度上研究一些具有时滞的种群动力学系统,利用Mawhin重合度理论建立了这一类抽象型系统的正周期解存在的充分性条件,从而使这些种群动力学模型的连续和离散时间情形,即微分方程和差分方程得到了统一研究.将所得到的结论可以应用到很多具体的生物数学模型上.
Several population dynamic systems with time delays are studied on time scales. By using the continuation theorem based on coincidence degree theory, Sufficient criterion are established for the existence of positive periodic solutions of the class systems, which has been unified and extensively applied in studying existence problems of these population models in differential equations and difference equations.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第7期170-174,共5页
Mathematics in Practice and Theory
基金
黑龙江省教育厅科学技术研究项目(11513043)
哈尔滨学院学科发展研究基金资助项目(HXK200716)
关键词
时间测度
种群动力学方程
时滞
重合度
周期解
time scale
population dynamic equation
time delay
coincidence degree
periodicsolution