期刊文献+

基于堆积协变信息与最小自由能预测含伪结的RNA二级结构 被引量:2

Predicting RNA Secondary Structures Including Pseudoknots by Covariance with Stacking and Minimum Free Energy
下载PDF
导出
摘要 RNA伪结预测是RNA研究的一个难点问题。文中提出一种基于堆积协变信息与最小自由能的RNA伪结预测方法。该方法使用已知结构的RNA比对序列(ClustalW比对和结构比对)测试此方法,侧重考虑相邻碱基对之间相互作用形成的堆积协变信息,并结合最小自由能方法对碱基配对综合评分,通过逐步迭代求得含伪结的RNA二级结构。结果表明,此方法能正确预测伪结,其平均敏感性和特异性优于参考算法,并且结构比对的预测性能比ClustalW比对的预测性能更加稳定。文中同时讨论了不同协变信息权重因子对预测性能的影响,发现权重因子比值在λ1:λ2=5:1时,预测性能达到最优。 Prediction of RNA secondary structures including pseudoknots is a difficult topic in RNA field. Current predicting methods usually have relatively low accuracy and high complexity. Considering that the stacking of adjacent base pairs is a common feature of RNA secondary structure, here we present a method for predicting pseudoknots based on covariance with stacking and minimum free energy. A new score scheme, which combined stacked covariance with free energy, was used to assess the evaluation of base pair in our method. Based on this score scheme, we utilized an iterative procedure to compute the optimized RNA secondary structure with minimum score approximately. In each interaction, helix of high covariance and low free energy was selected until the sequences didn't form helix, so two crossing helixes which were selected from different iterations could form a pseudoknot. We test our method on data sets of ClustalW alignments and structural alignments downloaded from RNA databases. Experimental results show that our method can correctly predict the major portion of pseudoknots. Our method has both higher average sensitivity and specificity than the reference algorithms, and performs much better for structural alignments than for ClustalW alignments. Finally, we discuss the influence on the performance by the factor of covariance weight, and conclude that the best performance is achieved when λ1 : λ2=5 : 1.
出处 《生物工程学报》 CAS CSCD 北大核心 2008年第4期659-664,共6页 Chinese Journal of Biotechnology
基金 国家自然科学基金(No.60673018) 湖南省自然科学基金(No.06JJ4123)资助~~
关键词 RNA二级结构 伪结 堆积协变信息 最小自由能 RNA secondary structure, pseudoknots, covariance with stacking, minimum free energy
  • 相关文献

参考文献11

  • 1Rivas E, Eddy S. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol, 1999, 285: 2053-2068.
  • 2Reeder J, Giegerich R. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics, 2004, 5: 104.
  • 3Luck R, Graf S, Steger G. ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Research, 1999, 27(21): 4208-4217.
  • 4王金华,骆志刚,管乃洋,严繁妹,靳新,张雯.基于最小自由能和协变信息预测带伪结RNA二级结构的迭代化方法[J].遗传,2007,29(7):889-897. 被引量:1
  • 5Ruan J, Stormo GD, Zhang W. An iterated loop matchingapproach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics, 2004, 20: 58-66.
  • 6Ren J, Rastegari B, Condon A, et al. HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA, 2005, 11(10): 1494-1504.
  • 7Hofacker IL, Fekete M, Stadler PF. Secondary structure prediction of aligned RNA sequences. J Mol Biol, 2002, 319: 1059-1066.
  • 8Lindgreen S, Gardnerand PE Krogh A. Measuring covariation in RNA alignments: physical realism improves information measures. Bioinforraatics, 2006, 22(24): 2988-2995.
  • 9Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research, 1981, 9(1): 133-148.
  • 10Witwer C, Hofacker IL, Stadler PF. Prediction of consensus RNA secondary structures including pseudoknots. IEEE/ACM Transaction on Computational Biology and Bioinformatics, 2004, 1(2): 66-77.

二级参考文献17

  • 1Robin DD,Sean RE.RNA structural alignment using stochastic context-free grammars.Saint Louis,Missouri,USA:Department of Biomedical Engineering,Sever Institute of Technology,Washington University,2004.
  • 2Christina Witwer Predicting RNA consensus structure including pseudoknots.Institute for Theoretical Chemistry and Structural Biology,University Vienna,2003.
  • 3Zuker M,Stiegler P.Optimal computer folding of large RNA sequences using thermodynamics and auxiliary in formation.Nucleic Acids Research,1981,9(1):133-148.
  • 4Hofacker IL,Fontana W,Stadler PF,Bonhoeffer LS,Tacker M,Schuster P.Fast folding and comparison of RNA secondary structures(The vienna RNA package).Chemical Monthly,1994,125:167-188.
  • 5Sankoff D.Simultaneous solution of the RNA folding,alignment and protosequence problems.SLAM J Applied Mathematics,1985,45(5):810-825.
  • 6Havgaard JH,Lyngs RB,Stormo GD,Gorodkin J.Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%.Bioinformatics,2005,21(9):1815-1824.
  • 7Mathews DH.Predicting a set of minimal free energy RNA secondary structrures common to two sequences.Bioinformatics,2005,21(10):2246-2253.
  • 8Rivas E,Eddy SR.Noncoding RNA gene detection using comparative sequence analysis.http://www.biomed-central.com/1471-2105/2/8,2001-10-10.
  • 9Knudsen B,Hein J.RNA secondary structure prediction using stochastic context-free grammars and evolutionary history.Bioinformatics,1999,15(6):446-454.
  • 10Pedersen,Meyer JS,Forsberg IM,Simmonds P,Hein J.A comparative method for finding and folding RNA secondary structures within protein-coding regions.Nucleic Acids Research,2004,32(16):4925-4936.

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部