期刊文献+

On the Elliptic Equation △u+K(x)e^(2u)=0 with K(x) Positive Somewhere

椭圆方程“△u+K(x)e^(2u)=0”当K(x)在某些点为正时解的存在性(英文)
下载PDF
导出
摘要 This paper considers the existence problem of an elliptic equation, which is equivalent to the prescribing conformal Gaussian curvature problem on R^2. An existence result is proved. In particular, K(x) is allowed to be unbounded above.
作者 武三星 张静
机构地区 College of Science
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第1期89-95,共7页 数学季刊(英文版)
关键词 elliptic equation Riemannian manifold conformal Riemannian metric Gaussian curvature: Semilinear Elliutic PDE 椭圆方程 正时解 存在性 黎曼几何流形
  • 相关文献

参考文献9

  • 1AVILES P. Conformal complete metrics with prescribed nonnegative Gaussian curvature in R2 [J]. Invent Math, 1986, 83: 519-544.
  • 2MCOWEN R C. Conformal metrics in R2 with prescribed Gaussian curvature and positive total curvature[J]. Indiana Univ Math J, 1985, 34: 97-104.
  • 3MOSER J. A sharp form of an inequality by N. Trudinger[J]. Indiana Univ Math J, 1971, 20: 1077-1092.
  • 4NI Wei-ming. On the elliptic equation △u + Ke^2u = 0 and conformal metrics with prescribed Gauesian curvature[J]. Invent Math, 1982, 66: 343-352.
  • 5POLYA G, SZEGO G. Isoperimetric Inequalities in Mathematical Physics[M]. New Jersey: Princeton Univ Press, 1951.
  • 6SATTINGER H. Conformal metrics in R2 with prescribed Gaussian curvature[J]. Indiana Univ Math J, 1972, 22: 1-4.
  • 7SOBOLEV S L. Application of Functional Analysis in Mathematical Physics[M]. Rhode Island: American Mathematical Society, Providence, 1963.
  • 8WU San-xing. Existence and nonexistence of conformal metrics in R^2 with prescribed Gaussian curvature[J]. Beijing Mathematics, 1997, 3: 13-19.
  • 9WU San-xing. Prescribing Gaussian curvature on R^2[J]. Proceedings of the A M S, 1997, 125: 3119-3123.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部