期刊文献+

Localization of Solutions of a Nonlinear Diffusion Problem

一类非线性扩散问题解的局部化(英文)
下载PDF
导出
摘要 This paper concerns with properties of solutions of a nonlinear diffusion problem in non-divergence form. By constructing proper test functions, it is proved that solutions of the problem possess the property of localization.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第1期103-108,共6页 数学季刊(英文版)
基金 the Tian Yuan Foundation(10626056) the Dalian Nationalities University(20076209)
关键词 nonlinear diffusion problem non-divergence form LOCALIZATION 非线性 扩散问题 局部化 非发散形态
  • 相关文献

参考文献10

  • 1ESTEBAN J R, VAZQUEZ J L. Homogeneous diffusion in R with power-like nonlinear diffusivity[J]. Arch Rat Mech Anal, 1988, 103(1): 39-80.
  • 2WU Zhuo-qun, ZHAO Jun-ning, YIN Jing-xue, et al. Nonlinear Diffusion Equations[M]. Singapore: World Scientific, 2001.
  • 3DAL PASSO R, LUCKHAUS S. A degenerate diffusion problem not in divergence form[J]. J Diff Equa, 1987, 69(1): 1-14.
  • 4UGHI M. A degenerate parabolic equation modelling the spread of an epidemic[J]. Ann Mat Pura Appl, 1986, 143: 385-400.
  • 5BERTSCH M, DAL PASSO R, UGHI M. Positivity property of viscosity solutions of a degenerate parabolic equation[J]. Ann Math Pura Appl, 1992, 161: 57-81.
  • 6BERTSCH M, UGHI M. Nonuniqueness of solutions of a degenerate parabolic equation[J]. Nonlinear Anal, TMA, 1990, 14(7): 571-592.
  • 7WANG Shu, WANG Ming-xin, XIE Chun-hong. A nonlinear degenerate diffusion equation not in divergence form[J]. Z Angew, Math Phys, 2000, 51: 149-159.
  • 8ZHOU Wen-shu, WU Zhuo-qun. Some results on a class of degenerate parabolic equations not in divergence form[J]. Nonlinear Anal, TMA, 2005, 60(5): 863-886.
  • 9ZIEMER W P. Weakly Differentiable Functions[M]. New York: Springer-Verlag, 1989.
  • 10LIN Fang-hua, YANG Xiao-ping. Geometric Measure Theory-an Introduction[M]. Beijing: Science Press, 2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部