期刊文献+

一种基于模糊神经网络加权的多维稀疏模糊推理方法

Multidimensional Fuzzy Reasoning Method Based on Weight of Fuzzy Neural Network
下载PDF
导出
摘要 在稀疏规则库条件下,经典的插值理论针对一维稀疏规则库提出了各种不同的插值方法,取得了很多很好的经验;但对多维稀疏规则条件的近似推理研究很少,不仅存在着难以保证推理结果的凸性和正规性等问题,而且没有考虑到多维变量之间的联系即对结论的影响权值,造成推理结果的误差性更大。多变量规则的模糊插值推理是插值推理研究的重要方面,为了在多变量稀疏规则条件下得到好的插值推理效果,本文提出了一种基于模糊神经网络加权的多维模糊推理方法,为智能系统中的模糊推理提供了一个十分有用的工具。 Interpolative reasoning is type of important reasoning approaches under sparse rules. Interpolative reasoning in one dimension has been researched widely, but the research in multi-dimension is lacking and a few existing approaches have some faults. These methods not only cannot guarantee the convexity of result, but also cannot consider the relation between many variables, weight of influenced conclusion. It leads to more error of inferential result. Interpolative reasoning in multi-dimension is an important research aspect of interpolative reasoning, in order to get better conclusion under multidimensional sparse rules condition, we propose a fuzzy multidimensional reasoning method based on weight of fuzzy neural network, which moreover can keep the convexity of the reasoning consequence.
出处 《计算机科学》 CSCD 北大核心 2008年第4期193-196,共4页 Computer Science
基金 国家科技部高新技术计划项目(2005EJ000017) 河北省科技研究与发展计划(02547015D) 河北省普通高等学校博士科研资助基金,2002(B2002118)
关键词 多维稀疏模糊推理 模糊神经网络 权值 相似性 Multidimensional sparse fuzzy reasoning, Fuzzy neural network, Weight, Similarity
  • 相关文献

参考文献11

  • 1Koczy L T, Hirota K. Interpolative reasoning with insufficient evidence in sparse fuzzy rules bases Inform. Sci, 1993, 71: 169-201
  • 2Koczy L T, Hirota-K. Approximate reasoning by linear rule interpolation and general approximation [J]. International Journal of Approximate Reasoning , 1993, 9 (3):197-225
  • 3王天江,卢正鼎,李凡.基于几何相似的模糊插值推理[J].计算机科学,2004,31(9):169-171. 被引量:3
  • 4王天江,卢正鼎.多变量规则的线性插值推理方法[J].计算机科学,2004,31(6):173-176. 被引量:2
  • 5Marsala C. Bernadette bouchon-meunier, interpolative reasoning with multi-variable rules [C]. In: Proceeding of Joint 9th IFSA World Congress and 20th NAFIPS International Conference, 2001, 7 : 2476-2482
  • 6Huang Z. A New Fuzzy Interpolative Reasoning Method Based on Center of Gravity. In: The IEEE International Conference on Fuzzy Systems, 2003. 25-30
  • 7Baranyi P. A generalized concept for fuzzy rule interpolation. Fuzzy systems, IEEE Transactions 2004,12(6): 820-837
  • 8Wong K W,Tikk D,Gedeon T,et al. Fuzzy Rule Interpolation for Multidimensional Input Spaces with Applications: A Case Study. IEEE Transactions on Fuzzy Systems, 2005,13(6): 809-819
  • 9李洪兴.模糊控制的插值机理[J].中国科学(E辑),1998,28(3):259-267. 被引量:252
  • 10Zadeh L A. Fuzzy Sets and Their Applications to Cognitive and Decision Processes[M ]. In: Zadeh L A, et al. New York Academic Press, 1975.1-39

二级参考文献19

  • 1李洪兴.从模糊控制的数学本质看模糊逻辑的成功──关于“关于模糊逻辑似是而非的争论”的似是而非的介入[J].模糊系统与数学,1995,9(4):1-14. 被引量:145
  • 2区弈勤 张先迪.模糊数学原理及应用[M].成都:成都电讯工程学院出版社,1989.1-68.
  • 3[2]Zadeh L A.The Concept of alinguistic variable and its application to approximate reasoning Part Ⅰ,Ⅱ,Ⅲ.Information Science,1975,8:199~251,301~357,1975,9:43~80
  • 4[4]Koczy L T,Hirota K. Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases. Information Sciences, 1993,71 (1,2):169~201
  • 5[5]Koczy L T,Hirota K. Approximate reasoning by linear rule interpolation and general approximation. International Journal of Approximate Reasoning, 1993,9(3): 197~225
  • 6[6]Baranyi P,Tikk D,Yam Y,Koczy L T,Nadai L. A new method for avoiding abnormal conclusion for α-cut based rule interpolation.IEEE International Fuzzy Systems Conference Proceedings, 1999,8:383~388
  • 7[7]Kawase S,Chen Q. On fuzzy reasoning by Koczy' s linear rule interpolation: [Technical report ]. Teikyo Heisei University, Ichihara, 1996
  • 8[8]Shi Y,Mizumoto M. Some considerations on Koczy's interpolative reasoning method. Journal SOFT, 1996,8:147 ~ 157
  • 9汪培庄,模糊系统理论与模糊计算机,1996年
  • 10李洪兴,Fuzzy Sets and Fuzzy Decision-Making,1995年

共引文献253

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部