期刊文献+

均值漂移在背景像素模态检测中的应用

Application of Mean Shift Algorithm in Mode Seeking of Background Pixel Values
下载PDF
导出
摘要 自适应背景更新是视频序列运动分割中的重要步骤,而背景像素分布的不规律性是对背景进行更新的困难所在。本文首先对背景像素值分布的模态性特点进行描述,然后提出采用均值漂移(MeanShift)方法检测背景像素的模态数量,从而为背景建模提供依据,可以针对不同模态数量的背景像素采用不同的建模方法。这种基于背景像素模态分类的方法能够实现背景更新在精度和速度上的折中。 The background updating step is crucial to motion segmentation in video sequences. However, the irregular distributions of background pixel values make the background modeling complicated. First, the multi-modality problem of background pixel values is described. Then a novel method for background pixel classification by using mean shift based mode-seeking algorithm is presented, which can classify the background pixels as single mode or multiple mode pixels so that different updating methods can be applied. The presented method can help improve the speed of background reconstruction without reducing its precision
出处 《计算机科学》 CSCD 北大核心 2008年第4期228-230,237,共4页 Computer Science
基金 科技部科技型中小型企业技术创新基金无偿资助项目(立项代码:02C26214400224) 广东省科技计划资助项目(项目编号:2002A1020104)
关键词 均值漂移 背景更新 模态检测 运动分割 Mean shift, Background updating, Modal detection, Motion segmentation
  • 相关文献

参考文献16

  • 1Toyama K, Krumm J, Brumitt B, et al. Wallflower: principles and practice of background maintenance. In: Proceedings of the IEEE International Conference on Computer Visioru Kerkyra Greece, 1999. 255-261
  • 2Stauffer C,Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 2, 1999. 23-25
  • 3Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction. In: Proceedings of the European Conference on Computer Vision. Dublin Ireland, 2000. 751-767
  • 4侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 5Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):809-830
  • 6Ridder C, Munkelt O, Kirehner H. Adaptive background estimation and foreground deteetion using Kalman-filter. In: Proceedings of the International Conference on Recent Advances in Meehatronies. UNESCO Chair on Meehatronies, 1995. 193-199
  • 7Fukanaga K, Hostetler L D. The estimation of the gradient of a density funetion, with applications in pattern recognition. IEEE Trails on Information Theory,1975, 21(1):32-40
  • 8Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790 -799
  • 9Comanicu D,Meer P. Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619
  • 10Meer P,Georgeseu B. Edge detection with embedded confidence. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(12) : 1351-1365

二级参考文献25

  • 1Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.
  • 2Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820.
  • 3Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232.
  • 4Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538.
  • 5Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308.
  • 6Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199.
  • 7Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997.
  • 8Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Vol 2. 1999. 246-252.
  • 9KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. In:The 2rid European Workshop on Advanced Video-based Surveillance Systems. Kingston upon Thames, 2001.
  • 10Elgammal A, Harwood D, Davis L. Non-Parametric model for background subtraction. In: Proc. of the 6th European Conf. on Computer Vision. Dublin Ireland, 2000.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部