期刊文献+

Web services interface to EPICS channel access 被引量:1

Web services interface to EPICS channel access
下载PDF
导出
摘要 Web services is used in Experimental Physics and Industrial Control System (EPICS).Combined with EPICS Channel Access protocol,Web services' high usability,platform independence and language independence can be used to design a fully transparent and uniform software interface layer,which helps us complete channel data acquisition,modification and monitoring functions.This software interface layer,a cross-platform of cross-language, has good interopcrability and reusability. Web services is used in Experimental Physics and Industrial Control System (EPICS). Combined with EPICS Channel Access protocol, Web services' high usability, platform independence and language independence can be used to design a fully transparent and uniform software interface layer, which helps us complete channel data acquisition, modification and monitoring functions. This software interface layer, a cross-platform of cross-language, has good interoperability and reusability.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2008年第2期74-78,共5页 核技术(英文)
关键词 EPICS 信道接口 WEB 服务器 中间件 EPICS, Channel access, Web services, Middleware
  • 相关文献

参考文献7

  • 1EPICS home page: http://www.aps.anl.gov/epics.
  • 2Hill J O. EPICS R3.14 channel access reference manual. http://www.apl.anl.gov/epics/base/R3-14/6-docs/CAref.ht
  • 3Evans K. Introduction to channel access clients. http://aps.anl, gov/aod/bcda/epicsgettingstarted/developtoo ls/introductionchannelaccess.html.
  • 4Java channel access home page: http://jca.cosylab.com.
  • 5Furukawa K, Satoh M. Mejuev I, et al. A java-based EPICS archive viewer with SOAP interface for data retrieval. ICALEPCS'03, Gyeongju, Korea, 2003.
  • 6NetBeans home page: http://ww.netbeans.org/kb.
  • 7Portmann G, Corbett J, Terebilo A. Middle layer software manual for accelerator physics. LBNL internal report, LSAP-302, 2005.

同被引文献26

  • 1余有明,刘玉树.进化计算的理论与算法[J].计算机应用研究,2005,22(9):77-80. 被引量:9
  • 2Eberbach E. Toward a Theory of Evolutionary Computation [J]. Biosystems,2005, 82(1): 1-19.
  • 3Koza J R. Genetic Programming : On the Programming of Computers by Means of Natural Selection [M]. Cambridge, MA: MIT Press,1992.
  • 4Bolchini C, Ferrandi P, Lanzi P Let al. Evolving Classifiers on Field Programmable Gate Arrays: Migrating XCS to FPGAs [J]. Journal of Systems Architecture,2006, 52(8) : 516-5.33.
  • 5Gerard P, Meyer J A, Sigaud O. Combining Latent Learning with Dynamic Programming in the Modular Anticipatory Classifier System [J]. European Journal of Operational Research,2005, 160(3): 614-637.
  • 6Dorigo M Optimization. Learning and Natural Algorithms[D]. Politecnico diMilano. Itally, 1992.
  • 7Wong K Y, See P C. A New Minimum Pheromone Threshold Strategy ( MPTS ) for Max-min Ant System [J]. Applied Soft Computing, 2009, 9 (3) 882-888.
  • 8Kennedy J, Eberhart R. Particle Swarm Optimization [C]. Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center,1995:1 942-1 948.
  • 9Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]. Proceedings of IEEE International Conference on Evolutionary Computation, 1998; 69- 73.
  • 10Pham D T, Ghanbarzadeh A, Koc E et al. The Bees Algorithm-A Novel Tool for Complex Optimisation Problems [J]. Intelligent Production Machines and Systems, 2006 : 454-459.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部