摘要
在二电平信号下基于多层感知器MLP(MultiLayerPerception)的均衡器(MLPE)性能远远优于传统的线性模向均衡器LTE(LinearTransversalEqualizer).但在多电平调制信号下,MLPE性能迅速下降.其主要原因在于激活函数的选择.文中提出了一种适于多电平信号均衡的神经网络模型——分段多层感知器SMLP(SegmentMultiLayerPerception),并给出其算法.模拟结果表明,基于SMLP的均衡器,比LTE和MLP收敛速度更快,最小均方误差MMSE(MinimumMeanSquareEror)也小得多,而计算复杂度则与MLP相同.
The multilayer perceptron (MLP) based equalized (MLPE) functions better than the comentional linear transversal equalizer (LTE) in case of bipolar valued data. But when dealing with multilevel modulated signals (such as 4 PAM or 16 QAM), the performance of the MLPE deteriorates rapidly. In this paper, a new kind of neural network model, named sgemented MLP (SMLP), is presented, which is suited for multilevel signal equalization. The algorithm of the SMLP is also given. The experimental results show that the SMLP based equalizer has a faster convergence speed and a smaller minimum mean square error than the LTE and the MLPE if the computational complexity is the same as that of MLP.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
1997年第3期406-410,共5页
Journal of Xidian University
基金
国家自然科学基金