期刊文献+

基于全信息小波包和支持向量机的旋转机械故障诊断

Rotary Machinery Fault Diagnosis Based on Full Information Wavelet Packet and Support Vector Machine
下载PDF
导出
摘要 针对传统旋转机械单通道故障诊断的信息不完整以及缺少故障样本等问题,提出了基于全信息小波包和支持向量机的旋转机械故障诊断方法。运用小波包频道能量分解技术提取了全信息能量特征向量,以此作为支持向量机多故障分类器的故障样本,经训练的分类器作为故障智能分类器可对设备工作状态进行自动识别和诊断。实验研究表明:基于全信息小波包和支持向量机的故障诊断方法能准确、有效地对旋转机械的工作状态和故障类型进行分类,显著提高了故障诊断的准确率。 Due to the insufficiency of traditional rotary machinery fault diagnosis with single channel signal and shortage of fault data samples, a rotary machinery fault diagnosis method base on full information wavelet packet and support vector ma- chine is proposed. Extracting the full information characteristic vector with the technology of wavelet packet frequency segment power decomposition and taking it as input fault of support vector machine multi - fault classifier, the trained classifier, as fault intelligent classification, had very strong identification capability, which could identify automatically the working state of rotary machinery. The experiment result shows that the proposed approach can classify working condition of rotary machinery accurately and effectively, and can improve fault diagnosis accuracy obviously.
出处 《汽轮机技术》 北大核心 2008年第2期136-138,共3页 Turbine Technology
基金 国家自然科学基金资助项目(the National Natural Science Foundation of China under Grant NO.50675209) 河南省杰出人才创新基金(the Outstanding Talented Person Innovation Foundation of Henan under Grant NO.0621000500)。
关键词 全信息小波包 支持向量机 旋转机械 故障诊断 full information wavelet packet support vector machine:rotary machinery fault diagnosis
  • 相关文献

参考文献7

二级参考文献15

共引文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部