期刊文献+

掺铒光纤中浓度效应对光脉冲群速的影响 被引量:4

Effect of Ion Density on Slow Light Propagation in Erbium-Doped Optical Fiber
原文传递
导出
摘要 利用相干布居振荡技术在介质吸收光谱上产生烧孔,孔宽大约为基态粒子数恢复时间的倒数.由增益理论分析得出不同抽运光强度对介质吸收状态的影响.在介质的吸收区域,振荡导致光脉冲经历饱和吸收,脉冲传输延迟;在介质的增益区域,振荡又导致光脉冲经历增益饱和、脉冲传输超前.将此技术应用在掺铒光纤(EDOF)中实现了光速人为可控.根据布居振荡效应及增益理论,由速率方程出发,得到了探测光的群折射率的理论解析表达式.考虑掺铒浓度对光脉冲群速度的影响,分别对四种浓度的光纤进行实验研究,观测到的最慢群速分别为3.45×102m/s,相应感生群折射率8.7×105. In the absorption spectrum of the medium, a burned hole is appeared by coherent population oscillation, and the linewidth of this feature is approximately the inverse of the ground state population recovery time. Based on the theoretical analysis of gain, the effect of absorption on the different pump powers is obtained. In the medium absorption range, the oscillation leads the pulse to experience absorption saturation and propagation delay; in the medium gain range, this effect induces the pulse to experience gain saturation and propagation advance. Making use of coherent population oscillation we can control the group velocity of light propagation in erbium-doped optical fiber. According to coherent population oscillation and gain theory, the analytic expression of the group index from rate equation is obtained. In the experiment the slowest group velocity was 3.45×10^2 m/s, and the corresponding group index was 8.7×10^5. The simulation results are quantitatively coincident with the experimental data.
出处 《中国激光》 EI CAS CSCD 北大核心 2008年第4期563-566,共4页 Chinese Journal of Lasers
基金 国家自然科学基金(60478014 60272075)资助项目
关键词 光纤光学 光谱烧孔 相干布居振荡 饱和吸收 慢光 fiber optics spectral burning hole coherent population oscillation saturable absorption slow light
  • 相关文献

参考文献3

二级参考文献25

  • 1Enders A and Nimtz G 1992 J. Phys. I. France 3 1089
  • 2Steinberg A M, Kwait P G and Chiao R Y 1993 Phys. Rev. Lett.71 708
  • 3Wang L J, Kuzmich A and Dogariu A 2000 Nature (London) 406 277
  • 4Kasapi A, Jain M, Yin G Y and Harris S E 1995 Phys. Rev. Lett.74 2447
  • 5Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature(London) 397 594
  • 6Kash M M et al 1999 Phys. Rev. Lett. 82 5229
  • 7Budker D, Kimball D F, Rochester S M and Yashchuk V V 1999 Phys. Rev. Lett. 83 1767
  • 8Bigelow M S, Lepeshkin N N and Boyd R W 2003 Phys. Rev.Lett. 90 113903
  • 9Bigelow M S, Lepeshkin N N and Boyd R W 2003 Scince 301 200
  • 10Kocharovskaya O, Rostovtsev Y and Scully M O 2001 Phys. Rev.Lett. 86 628

共引文献14

同被引文献50

  • 1王春灿,张帆,陆玉春,耿蕊,童治,宁提纲,简水生.单频大功率光纤放大器中抑制受激布里渊散射的理论分析[J].中国激光,2006,33(12):1630-1635. 被引量:17
  • 2K.Y.Song,M.G.Herráez,L.Thévenaz.Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering[J].Opt.Express,2005,13(1):82-88.
  • 3A.E.Willner,B.Zhang,L.Zhang et al..Optical signal processing using tunable delay elements based on slow light[J].IEEE J.Sel.Topics Quant.Electron.,2008,14(3):691-705.
  • 4B.Zhang,L.S,Yan,I.Fazal et al..Slow light on Gbit/s differential-phase-shift-keying signals[J].Opt.Express,2007,15(4):1878-1883.
  • 5L.L.Yi,Y.Jaoun,W.S.Hu et al..Improved slow-light performance of 10 Gb/s NRZ,PSBT and DPSK signals in fiber broadband SBS[J].Opt.Express,2007,15(25):16972-16979.
  • 6L.L.Yi,L.Zhan,W.S.Hu et al..Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump[J].IEEE Photon.Technol.Lett.,2007,19(8):619-621.
  • 7A.Zadok,O.Raz,A.Eyal et al..Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers[J].IEEE Photon.Technol.Lett.,2007,19(7):462-464.
  • 8Z.M.Zhu,D.J.Gauthier,Y.Okawachi et al..Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber[J].J.Opt.Soc.Am.B,2005,22(11):2378-2384.
  • 9K.Y.Song,M.G.Herráez,L.Thévenaz.Long optically controlled delays in optical fiber[J].Opt.Lett.,2005,30(14):1782-1784.
  • 10M.D.Stenner,M.A.Neifield,Z.M.Zhu et al..Distortion management in slow-light pulse delay[J].Opt.Express,2005,13(25):9995-10002.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部