期刊文献+

数据分类技术在高校人才识别系统中的应用 被引量:6

Application of Data Classification Technology in Evaluating Talents in University
下载PDF
导出
摘要 提出将数据挖掘技术应用于高校人才识别中,采用数据分类方法对人才进行定量的识别,更具科学性.讨论了数据分类的定义和方法,介绍了决策树分类和简单贝叶斯分类以及贝叶斯网络推理的算法,并给出具体的数据分类实例,利用过去已有的引进人才的经验数据分析提取规则,为以后的人才识别提供合理的、科学的技术支持. The paper put forwards a method of applying data mining technology to evaluate talents in university while adopting data classification to propoee a new quantitative method of evaluation. The definition and methods of data classification are discussed, and algorithms of decision tree and simple Bayes classification and Bayes network reasoning are introduced. A concrete data classification example is also presented and draw underlying laws with reference to the existing data on bringing in talented person, providing reasonable and scientific technical support for the policy-making of the import of talents in future.
作者 孙笑微
出处 《沈阳师范大学学报(自然科学版)》 CAS 2008年第2期133-136,共4页 Journal of Shenyang Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10471096) 辽宁省高等学校科学研究项目(20060842)
关键词 数据挖掘 数据分类 决策树 贝叶斯分类 贝叶斯网络 data mining data classification decision tree Bayes classification Bayes network
  • 相关文献

参考文献8

二级参考文献18

  • 1荆丰伟,刘冀伟,王淑盛.改进的K-均值算法在岩相识别中的应用[J].微计算机信息,2004,20(7):41-42. 被引量:5
  • 2余东峰,孙兆林.基于贝叶斯网络不确定推理的研究[J].微型电脑应用,2004,20(8):6-8. 被引量:23
  • 3Jiawei Han Micheline Kamber等著.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 4Friedman N,Goldszmidt M. Building classifiers using Bayesian network [J]. In proc Nation Conference on Artificial Intelligence,Menlo park,CA:AAAI Press,1996,1227-1284.
  • 5Nir Friedman.Bayesian network classifiers [J].Machine Learning,1997,29:131 - 163.
  • 6Dempster A,Laird N,Rubin D.Maximum likelihood estimation from incomplete data via EM algorithm[J]. J.Royal Statistical Society Series B,1977,39.1-38.
  • 7Russell S,Binder J,Koller D,et al.Local learning in prohabilistic networks with hidden variables[C]//In:Cooper G F.Moral S ed.Proceedings of the 14th International Joint Conference on Artificial Intelligence.San Francisco,CA:Morgan Kaufmann Publishers,Inc,1998:1146-1152.
  • 8Cheng J,Greiner R.Comparing Bayesian nerwork classifiers[C]//Proccedings of the fifteenth conference on uncertainty in artificial intelligence.San Francisco:Morgan Kaufmann.1999:101-107.
  • 9FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[A]. Unpublished manuscript available electronically (on our web pages, or by ernail request). An extended abstract appeared in Computational Leaming Theory: Second European Conf, EuroCOLT'95[C]. 1995:23-37.
  • 10SCHAPIRE R E, FREUND Y, BARTLETT Y, et al. Boosting the margin: A new explanation for the effectiveness of voting methods[A]. Douglas H Fisher eds. Proc of the 14th Int' 1 Conf on Machine Learning[C]. San Francisco: Morgan Kaufmann, 1997: 322-330.

共引文献70

同被引文献61

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部