期刊文献+

基于流统计特性的网络流量分类算法 被引量:21

A Network Traffic Classification Algorithm Based on Flow Statistical Characteristics
下载PDF
导出
摘要 针对传统基于单个流统计特性的网络流量分类算法识别率低、分类算法复杂的问题,在分析各类应用协议的基础上,发现了一组易于获取、可有效区分不同业务的网络流量特征.将这一组特征应用于网络流量分类,可以有效解决以往对等网络(P2P)业务识别率低下的问题;同时利用该组特征仅需采用多项逻辑斯谛回归算法即可实现网络流量的分类,较传统流量分类算法有较低的复杂度.实验结果表明,该组特征用于分类还具有较好的泛化特性,只需较少量训练样本即可在较长时间内保持较高的识别率. Based on analysis of application protocols, a group of multi-flow characteristics with low complexity, high quality is proposed to mitigate the problem of low recognition rate and high implementation complexity associated with the traditional flow classification algorithms using single flow statistics. These characteristics can effectively identify peer-to-peer (P2P) traffic in network flow classification, and improve the recognition rate of the traditional algorithms. They also enable the use of multinomial logistic regression algorithm to classify the network flow, and reduce the complexity of the traditional algorithms. Experiment results show that the proposed characteristics can achieve good generalization, and only need a small number of training samples to get a model that can maintain good performance for a long time.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2008年第2期15-19,共5页 Journal of Beijing University of Posts and Telecommunications
关键词 网络流量分类 统计特征 多项逻辑斯谛回归 network traffic classification flow statistical characteristics multinomial logistic regression
  • 相关文献

参考文献10

  • 1Logg C. Characterization of the traffic between SLAC and the Internet [ EB/OL ]. [ 2007-06-13 ]. http: // www. slac. stanford. edu/comp/net/slac-netflow/html/ SLAC-netflow. html.
  • 2Moore D, Keys K, Koga R, et al. Claffy CoralReef software suite as a tool for system and network administrators [C]//Burgess M. Proceedings of the LISA 2001 15th Systems Administration Conference. San Diego: USENIX, 2001: 133-144.
  • 3San S, Spatscheck O, Wang D. Accurate, scalable innetwork identification of P2P traffic using application signatures[C] // Proceeding of the 13th Internation World Wide Web Conference. NY: ACM Press, 2004: 512- 521.
  • 4Haffner P, Sen S, Spatscheck O, et al. ACAS: automated construction of application signatures [ C]//ACM SIGCOMM Workshop on MineNet 2005. Philadelphia: ACM Press, 2005: 197-202.
  • 5Cisco IOS Documentation. Network-based application recognition and distributed network-based application recognition [ EB/OL]. [ 2007-06-13 ]. http ://www. cisco. com/univercd/cc/td/doc/product/software/ios122/ 122newft/122t/122t8/dtnbarad. htm.
  • 6Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques [ C ]//ACM SIGMETRICS. New York: ACM Press, 2005: 50-60.
  • 7Auld T, Moore A W, Gull S F. Bayesian neural networks for Internet traffic classification [J]. IEEE Trans on Neural Network, 2007, 18(1) :223-239.
  • 8Okabe T, Kitamura T, Shizuno T. Statistical traffic identification method based on flow-level behavior for fair VoIP service [ C] // IEEE Workshop on VoIP Management and Security. Vancouver: IEEE Press, 2006: 35- 40.
  • 9Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: multilevel traffic classification in the dark [ C] //ACM SIGCOMM 2005. Philadelphia: ACM Press, 2005: 229-240.
  • 10Webb A R. Statistical pattern recognition[ M]. 2nd ed. England: Wiley, 2004: 161-162.

同被引文献143

引证文献21

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部