期刊文献+

扰动的时滞微分方程的多重周期解与Hamilton系统 被引量:1

Multiple Periodic Solutions of a Class of Differential Delay Equations Via Hamiltonian Systems
下载PDF
导出
摘要 讨论了一类带周期扰动项的时滞微分方程x′(t)=-[f(x(t-1))+f(x(t-2))+…+f(x(t-(n-1)))]+ε2g(t,ε)具有给定周期的多重周期解的存在性,其中n为正奇数,函数g关于变量t是1-周期的.运用渐近凸哈密顿系统的一些结果证明了此类方程在周期扰动下多重周期解的存在性,且所得周期解的最小重数与当g恒为零时系统的周期解的最小重数是一致的. In this paper, we study a class of differential delay equations with periodic perturbation x'(t) = - [f(x(t- 1)) +f(x(t-2)) +…+f(x(t- (n-)))] + ε^2g(t,ε). We get the existence of prescribed multiple periodic solutions of the equations by using some results of convex asymptotically linear Hamiltonian systems. And the smallest multiplicity of the periodic solutions agrees with the multiple number of the system with g = 0.
作者 成荣
出处 《安徽师范大学学报(自然科学版)》 CAS 2008年第2期116-118,127,共4页 Journal of Anhui Normal University(Natural Science)
基金 南京信息工程大学科研基金项目(Y407)
关键词 多重周期解 莫尔斯指标 哈密顿系统 multiple periodic solution Morse index Hamiltonian system
  • 相关文献

参考文献7

  • 1LI J, HE X. Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems [J ]. Nonlinear analsysi, 1998,31:45-54.
  • 2MEYER K R, HALL G R. Introduction to Hemiltonian dynamical systems and the n-body problem [M]. New York: Springe-Verlag, 1992.
  • 3ROCKAFELLAR R T. Convex analysis[M]. Princeton: Princeton Univ Press, 1970.
  • 4MAWHIN J, WILLEN M. Critical point theory, and Hamiltonian systems[M]. New York: Springer-Verlag, 1992.
  • 5AMANN H, ZEHNDER E. Periodic solutions of asymptotically linear Harniltonian systems[J ]. Manuscripta math, 1980,32:149-189.
  • 6LI J, LIU Z, HE X. Periodic soclutions of some differential delay equations created by Hamiltonian systmes[J]. Bull Austral Math Soc, 1999, 60:377 - 390.
  • 7LI J, HE X. Proof and generalization of Kaplan-Yorke's conjecture under the condition f(0) > 0 on periodic solul:ion of differential delay equations[J]. Science in China, 1992, Series A 42;957 - 964.

同被引文献9

  • 1MACKEY M, GLASS M. Oscillations and chaos in physiological control systems[J]. Science, 1997,197:287 -289.
  • 2SMITH H L, KUANG Y. Periodic solutions of delay differential equations of thresholdtype delay[A]. In: Graet and Hale ed, Oscillation and Dyr~nics in delay equations[C]. Contemporary Mathematics 129, AMs, Providence, 1999,153 -176.
  • 3KUANG Y, SMITH H L. Slowly oscillation periodic solutions of autonomous state-dependent delay equations[J]. Nonlinear Analysis, 2002,19 (9) :855 - 872.
  • 4LI Yong-kan, YANG Kuang. Positive solutions in periodic state-dependent delay equations and population models[J]. Proceedings of the American Mathematical Society, 2007,130(5):1345- 1353.
  • 5徐仁忠.泛函数分方程理论[M].昆明:云南科技出版社,1998:207-211.
  • 6丘冠英.算子T全连续的一个结论及证明.井冈山大学学报,2003,:30-32.
  • 7汪娜,鲁世平,章家顺,沈佐民.一类二阶时滞泛函微分方程周期解的存在与唯一性(英文)[J].安徽师范大学学报(自然科学版),2008,31(5):409-414. 被引量:3
  • 8蒋达清,魏俊杰.非自治时滞微分方程周期正解的存在性[J].数学年刊(A辑),1999,20A(6):715-720. 被引量:47
  • 9刘文祥.具状态依赖时滞的微分方程的周期正解[J].高校应用数学学报(A辑),2002,17(1):22-28. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部