期刊文献+

一维趋化模型方程的精确解 被引量:1

Exact solutions for chemotaxis model in 1-D
下载PDF
导出
摘要 研究了一类简化的Keller-Segel趋化模型,对于双曲趋化模型的Cauchy问题,给出了经典解整体存在的充分必要条件.对于抛物模型,利用试探函数的方法给出了它们的精确解. The paper concerns with Keller-Segel Chemotaxis model in 1-D, for Cauchy problem of hyperbolic model, a sufficient and necessary condition for guaranteeing global existence of classical solution is given, and for parabolic model, we construct some exact solutions by using of trial function method.
出处 《周口师范学院学报》 CAS 2008年第2期26-28,共3页 Journal of Zhoukou Normal University
基金 国家自然科学基金资助项目(No.19071024)
关键词 趋化现象 经典解 精确解 试探函数 chemotaxis explicit and exact solutions classical solution trial function method
  • 相关文献

参考文献10

  • 1OHMER H G, SCHAAP P. Oscillatory CAMP Signaliong in the development of Dictyostelium discoideum [J]. Comments on Theor. Bio. , 1985(5) :175 - 282.
  • 2GALLIN, QUIE P G. Leukocyte chemotaxis: methods, physiology, and clinical implications[M]. New York:Raven Press, 1978:47 - 51.
  • 3PATLAK C S. Random walk with persistence and external bias[J]. Bull. Math. Biophys, 1953,15: 311 - 338.
  • 4KELLER E F,SEGEL L A. Initiation of slime mold aggregation viewed as an instability[J]. J. Theor. Biology, 1970,26 : 399 - 415.
  • 5HILLEN T,LEVINE H A. Blow-up and pattern formation in hyperbolic models for chemotaxis in 1-D[J]. Z. angew Math. Phys. , 2003,54:839-868.
  • 6LEVINE H A,SLEEMAN B D. A system of reaction diffusion equation arising in the theory of reinforced random walks[J]. SIAM J. Appl. Math. , 1997, 57: 683 - 730.
  • 7罗光洲,郭金海,陈化.一维Chemotaxis模型双曲组的解的存在性及其抛物组的行波解[J].数学杂志,2005,25(1):53-58. 被引量:3
  • 8MURRY J D. Mathematical Biogy[M]. NewYork: Springer, 1989 : 272 - 293.
  • 9SMOOLER J. Shock Waves and Reaction-Diffusion Equations[M], NewYork: Springer-Verlag, 1994.
  • 10LIT. Global Classical Solutions for Quasilinear Hyperbolic Systems [M]. Researeh in Applied Mathematies, MASSON/John Wiley, 1994.

二级参考文献9

  • 1H. G. Othmer and P. Schaap. Oscillatory CAMP Signaliong in the development of Dictyostelium discoideum[J]. Comments on Theor Biology. 1985,5 : 175-282.
  • 2J. I. Gallin, P. G. Quie. Leukocyte chemotaxis: methods, physiology, and clinical implications[M].New York: Raven Press, 1978. 47-51.
  • 3D. R. Soll. Behavioral studies into the mechanism of eukaryotieehemotaxis [J]. J. Chemieal Ecdogy.1990,16:133-150.
  • 4E. F. Keller, L. A. Segel. Initiation of slime mold aggregation viewed as an instability[J]. J. Theo. Biology, 1970,26 : 399-415.
  • 5T. H illen, A. Stevens. Hyperbolic models for chemotaxis in 1-D[J]. Nonlinear Analysis:Real World Applications,2000, 1,409-433.
  • 6J. D. Murry. Mathematical Biogy[M]. New York: Springer, 1989. 272-293.
  • 7J. Smoller. Shock Waves and Reaction-Diffusion Equations [M]. 2nd ed. New York: Springer-Verlag, 1994. 391-397.
  • 8H. A. Levine, B. D. Sleman. A system of reaction diffusion equations arising in the theory of reinforced random walks[J]. SIAM J Appl. Math. 1997,57(3):683-730.
  • 9R. Schaaf. Stationary solutions of chemotaxis systems [J]. Trans. Amer. Math. Soc. 1985,292:531-556.

共引文献2

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部