期刊文献+

基于组件词表的物体识别

Object Recognition Based on Part Vocabulary
下载PDF
导出
摘要 提出一种基于组件词表的物体识别方法,通过AdaBoost从物体样本图像的组件中选取一些最具区分性的组件,构成组件词表。每幅图像都用词表中的组件来表征,在此基础上用稀疏神经网络来训练分类器。实验结果表明,该方法识别精度较高,对于遮挡和复杂背景有较强的鲁棒性。 This paper presents a novel method for object recognition based on part vocabulary. A vocabulary of object parts is automatically constructed from sample images of the object class by AdaBoost. Images are represented by using parts from the vocabulary. Based on it, Sparse Network of Winnows (SNoW) learning architecture is employed to learn to recognize the instances of the object class. Experimental results show that the method achieves high recognition accuracy on different data sets, and it is robust to partial occlusion and background clutter.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第7期38-40,共3页 Computer Engineering
关键词 物体识别 基于组件的表示 组件词表 ADABOOST算法 稀疏神经网络 object recognition part-based representation part vocabulary AdaBoost Sparse Network of Winnows(SNoW)
  • 相关文献

参考文献5

  • 1Fergus R, Perona P, Zisserman A. Object Class Recognition by Unsupervised Scale-invariant Learning[C].Proc. of IEEE Computer Society Conferenee on Computer Vision and Pattern Recognition. Madison, Wisconsin, USA: IEEE Press, 2003.
  • 2Opelt A, Fussenegger M, Pinz A, et al. Weak Hypotheses and Boosting for Generic Object Detection and Recognition[C].Proc. of European Conference on Computer Visionl Prague, Czech Republic: [s. n.], 2004.
  • 3Agarval S, Roth D. Learning a Sparse Representation for Object Detection[C].Proc. of European Conference on Computer Vision. Copenhagen, Denmark: [s. n.], 2002.
  • 4Carlson A J, Cumby C M, Rosen J L, et al. The Snow Learning Architecture[R]. Computer Science Department, Univ. of Illinois-Urbana-Champaign, Tech. Rep.: UIUCDCS-R-99-2101, 1999.
  • 5Mikolajczyk K, Schmid C. A Descriptors[C].Proc. of IEEE Computer Vision and Pattern USA: IEEE Press, 2003. Performance Evaluation of Local Computer Society Conference on Recognition. Madison, Wisconsin,

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部