期刊文献+

基于Pareto强度值演化的FPRs知识表示参数优化

Knowledge Representation Parameters Optimization of FPRs Based on Pareto Strength Evolution
下载PDF
导出
摘要 提出一种新的参数优化模型和求解算法,引入模糊熵来指导模糊产生式规则(FPRs)的参数优化,给出基于极大模糊熵定理的参数优化模型,提出求解该模型的Pareto强度值的演化算法。实验结果表明,该方法能够有效优化参数,一定程度上避免过度拟合,提高了FPRs的知识表示能力。 This paper introduces fuzzy entropy into the procedure of exploring parameters of Fuzzy Production Rules(FPRs).A parameter optimization model based on maximum fuzzy entropy principle is proposed and a Pareto strength evolutionary algorithm is introduced to solve this model.Experimental results show that the trained parameters gained from above strategy are highly accurate,therefore this method can decrease the phenomenon of over-fitting and improve the knowledge representation capability of FPRs.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第8期218-220,共3页 Computer Engineering
关键词 模糊产生式规则 知识表示参数 极大模糊熵定理 Pareto强度值演化 Fuzzy Production Rules(FPRs) knowledge representation parameter maximum fuzzy entropy principle Pareto strength evolution
  • 相关文献

参考文献10

  • 1Yeung D S, Tsang E C C. Improved Fuzzy Knowledge Representation and Rule Evaluation Using Petri Nets and Degree of Subsethood, Internet[J]. Journal of Intelligent Systems, 1994, 12(9): 1083-1100.
  • 2Tseng H C, Teo D W. Medical Expert System with Elastic Fuzzy Logic[C]//Proc. of the 3rd IEEE Internet Conference on Fuzzy System. Osaka, Japan: [s. n.], 1994.
  • 3Yeung D S, Tsang E C C. Weighted Fuzzy Production Rules[J]. Fuzzy Sets and Systems, 1997, 88(3): 299-313.
  • 4王永庆.人工智能定理与方法[M].西安:西安交通大学出版社,2003.
  • 5喻传赞.熵和信息与交叉学科[M].昆明:云南大学出版社,1994.
  • 6Liu Xuecheng. Entropy, Distance Measure and Similarity Measure of Fuzzy Sets and Their Relations[J]. Fuzzy Sets and Systems, 1992, 52(3): 305-318.
  • 7王国俊.模糊推理的全蕴涵三I算法[J].中国科学(E辑),1999,29(1):43-53. 被引量:351
  • 8Zhao Jian, Wang Xiaolong. Chinese POS Tagging Based on Maximum Entropy Model[C]//Proc. of IEEE International Conf. on Machine Learning and Cybernetics. Beijing, China: [s. n.], 2002.
  • 9周育人,李元香,王勇,康立山.Pareto强度值演化算法求解约束优化问题[J].软件学报,2003,14(7):1243-1249. 被引量:56
  • 10UCI Repository of Machine Learning Databases and Domain Theories[Z]. (2006-08-12). ftp://ftp.ics.uci.edu/pub/machine-learningdatabases.

二级参考文献26

  • 1吴望名.关于模糊逻辑的—场争论[J].模糊系统与数学,1995,9(2):1-10. 被引量:58
  • 2李洪兴.从模糊控制的数学本质看模糊逻辑的成功──关于“关于模糊逻辑似是而非的争论”的似是而非的介入[J].模糊系统与数学,1995,9(4):1-14. 被引量:145
  • 3Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 1996,4(1):1~32.
  • 4Michalewicz Z. Genetic algorithms, Numerical optimization and constraints. In: Esheiman LJ, ed. Proceedings of the 6th International Conference on Genetic Algorithms. San Mateo: Morgan Kanfmann Publishers, 1995 151~158.
  • 5Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2--4):311 ~338.
  • 6Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transaclons on Evolutionary Computation, 2000,4(3):284-294.
  • 7Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257~271.
  • 8Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2001,5(3):250--270.
  • 9Ono I, Kita H, Kobayashi S. A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self adaptation of crossover probabilities. In: Banzhaf W, Daida J, Eiben E, eds. GECCO'99:Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufmann Publishers, 1999. 496~503.
  • 10Tsutsui S, Yamamura M, Higuchi T. Multi-Parent recombination with simplex crossover in real coded genetic algorithms. In:Banzhaf W, Daida J, Eiben E, eds. GECCO'99: Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo:Morgan Kaufmann Publishers, 1999. 657---664.

共引文献405

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部