期刊文献+

基于神经元PID控制的无人机DSP飞控系统设计 被引量:2

A UAV Flight Control System Using DSP Based on Neuron PID
下载PDF
导出
摘要 航空科学技术的进步和应用领域的扩展不断推进着无人机飞控系统向着高精度、低功耗和小型化方向发展。针对小型无人机飞控系统在功耗、成本、可靠性以及集成度等方面的较高要求,设计了一种基于Freescale M56F807型DSP和神经元PID控制策略的飞控系统,详细阐述了系统的设计思想以及硬件、软件基本结构和控制策略。采用了时域信号的取样积累平均方法,减少了算法的实现难度,提高了采样精度。对硬件设计中的关键技术进行了研究和探讨,所设计的系统具有设计精炼,可靠性高,开放性好等优点,取得了较好的实验效果。基于DSP的现代高速数字处理飞控系统,能够赋予无人机更大的机动性、更高的灵活性和更广泛的适用性。 The progress of the science and technology of aviation and expansion of application are advancing the development of the flight control system of UAV in the direction of high precision, low consumption and miniaturization. A flight control system using Free Scale M56FS07 DSP as processor based on neuron PID is designed, which is aimed at the demands of power, cost, reliability and integration from small UAV. The design scheme, hardware and software structure and control strategy are expatiated based on the model of certain type UAV. The difficulty of the algorithm is reduced, and the precision of sampling is improved by using the method of taking a sample and accumulating the average value of the time domain signal. The key techniques related to hardware design are investigated. The system designed has the advantage of simple structure, high reliability and opening. Better experiment results have been made. The digital processing flight control system based on DSP can give the UAV greater mobility, higher flexibility and more extensive applicability.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2008年第2期1-5,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 湖南省科技计划重点项目(2007FJ1006)
关键词 神经元 PID 无人机 DSP 飞控系统 neuron PID unmanned aerial vehicle DSP flight control system
  • 相关文献

参考文献7

二级参考文献14

  • 1李朝晖,沈刚.基于CPLD的全数字PWM的设计[J].电气传动自动化,2004,26(3):7-9. 被引量:11
  • 2[1]Tomita M.New Sensorless Control for Brushless DC Motors Using Disturbance ObserversAnd Adaptive Velocity Estimations[J].IEEE Trans.on IE,1998,45 (2):274-282.
  • 3[4]Freescale.56F807 Technical Data[Z].USA:Freescale,2004.
  • 4[5]Freescale.56F800 User Manual[Z].USA:Freescale,2004.
  • 5AT91 hardware referrence, [Z] rev 1745c_ATARM_16_DEC_02, 2002.
  • 6雷亚平.[D].南京:南京航空航天大学,2003.
  • 7陈晔.[D].南京:南京航空航天大学,2003.
  • 8鲁道夫·布罗克豪斯(德) 金长江 译.飞行控制[M].北京:国防工业出版社,1999..
  • 9Arnold Berger.Embedded systems design--an introduction to processes[M].北京:电子工业出版社,2002.
  • 10Hyde RA,Glover K,Shanks GT.VSTOL first flight on an H∞ control law[J].Computing & Control Engineering Journal,1995,6(1):11-16.

共引文献98

同被引文献50

  • 1陈金科,孙秀霞,张力.基于ADRC的无人机纵向通道控制[J].空军工程大学学报(自然科学版),2006,7(6):10-12. 被引量:3
  • 2王美仙,李明,张子军.飞行器控制律设计方法发展综述[J].飞行力学,2007,25(2):1-4. 被引量:29
  • 3刘波,何清华,邹湘伏.无人机飞行控制技术初探[J].飞行力学,2007,25(2):5-8. 被引量:13
  • 4Xu Hao-jian, Maj Mirmirani. Robust adaptive sliding control for a class of MIMO nonlinear systems [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal ,Canada:AIAA ,2001 : 1-10.
  • 5Fan Yigang, Eugene M L, Frederick H A. Mixed H2/H∞ optional control for an elastic aircraft [ J ]. Journal of Guidance, Control, and Dynamics, 1996,19 ( 3 ) :650-655.
  • 6George Kukich ,James L Dolce. An expert system for simulating electric loads aboard space station[ R]. NASA TM- 103150,1990.
  • 7Babaei A R. Classical and fuzzy-genetic autopilot design for unmanned aerial vehicles [ J ]. Applied Soft Computing, 2011,11 ( 1 ) :365-372.
  • 8Sefer Kurnaz, Omer Cetin, Okyay Kaynak. Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles [ J ]. Journal of Intelligent Robot System, 2009,54 ( 1-3 ) :229-244.
  • 9Sung Kyung Hong. Fuzzy logic based closed-loop strap down attitude system for unmanned aerial vehicle [J]. Sensors and Actuators,2003,107(2) : 109-118.
  • 10Byoung S Kim, Athony J Calise. Nonlinear flight control using neural networks [ J ]. Journal of Guidance, Control, and Dynamics, 1997,20( 1 ) :22-25.

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部