期刊文献+

对称强向量拟均衡问题解集的稳定性及本质连通区的存在性 被引量:5

The Stability of Solutions Set and the Existence of Essential Component for Symmetric Strong Vector Quasi-equilibrium Problems
下载PDF
导出
摘要 研究对称强向量拟均衡问题解集的稳定性。在约束集值映射满足一定连续性与目标映射是锥-真拟凸的条件下证明了对称强向量拟均衡问题构成的空间M中,大多数(在Baire分类意义下)对称强向量拟均衡问题的解集是稳定的,并证明了M中的每个对称强向量拟均衡问题的解集至少存在一个本质连通区。 The stability of the solutions set for symmetric strong vector quasi - equilibrium problems are studied. In the space M, consisting of symmetric strong vector quasi - equilibrium problems satisfying some convexity and conti- nuity conditions, most of the symmetric strong vector quasi - equilibrium problems ( in the sense of Baire category) have stable solutions set, and that for each problem in, its solutions set possesses at least one essential component.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2008年第1期6-12,共7页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10561007) 江西省自然科学基金资助项目(01110067)
关键词 对称强向量拟均衡问题 解集的稳定性 本质连通区 symmetric strong vector quasi - equilibrium problems stability of the solution sets essential component
  • 相关文献

参考文献14

  • 1杨辉,俞建.广义向量似变分不等式解集的通有稳定性及本质连通区的存在性[J].系统科学与数学,2002,22(1):90-95. 被引量:16
  • 2Isac G, Yuan X Z. The Existence of Essentially Connected Components of Solutions for Variational Inequalities [ A ].Giannesse F. (ed), Vector Variational Inequalities and Vector Equilibria [ C ]. Netherlands : Kluver Acadmic Publishers,2000:255 - 265.
  • 3Yu J, Luo Q. On Essential Components of the Solutions Set of Generalized Games [ J ]. J Math Anal And Appl, 1999,230:303 - 310.
  • 4Lin Z. Essential Components of the Set of Weakly Pareto -Nash Equilibrium Points for Multiobjective Generalized Games in Different Topological Spaces [ J ]. Journal of Optimizations Theory and Applications, 2005, 124:387 - 450.
  • 5Xiang S W,Zhou Y H. On Essential Sets and Essential Components of Efficient Solutions for Vector Optimization Problems [ J ]. Journal of Mathematical Analysis and Applications ,2006,315:317 - 326.
  • 6Noor M A, Oettli W. On General Nonlinear Complementarity Problems and Quasi - equilibria [ J ]. Le Math, 1994,49:313 - 331.
  • 7Fu J Y. Symmetric Vector Quasi - equilibrium Problems [J]. Journal of Mathematical Analysis and Applications, 2003,285:708 - 713.
  • 8Chen J C, Gong X H. The Stability of Set of Solutions for Symmetric Vector Quasi - equilibrium Problems [ J ]. Journal of Optimization Theory and Applications,2005:136.
  • 9Gong X H. Symmetric Strong Vector Quasi - equilibrium Problems [ J ]. Math. Meth. Oper. Res. , 2007,65 : 305 - 314.
  • 10Aubin J P, Ekeland I. Applied Nonlinear Analysis [ M ]. New York :John Wiley and Sons, 1984.

二级参考文献13

  • 1俞建.对策论中的本质平衡[J].应用数学学报,1993,16(2):153-157. 被引量:21
  • 2Yu J, Luo Qun. On Essential Components of the Solution Set of Generalized Games [J ]. J Math Anal And Appl,1999, 230: 303 - 310.
  • 3Fort M K Jr. Essentianl and Nonessential Fixed Points [J]. Amer J Math, 1950, 72: 315 - 322.
  • 4Wu W T, Jiang J H. Essential Equilibrium Points of nperson. Non- cooperative Games [J]. Sci Sinica, 1962,11:1 307 - 1 322.
  • 5Kohlberge E, Mertens J F. On the Strategic Stability of Equilibria[J]. Econometrics, 1986, 54:1 003 - 1 037.
  • 6Isac G and Yuan XZ. The Exist of essencially connected Components of Solutions for Vairational Inequalities[A].F Giannesse (ed), Vector Variational Inequalities and Vector Equilibria[C]. Netherlands: Kluver Acadmic Publishers, 2000. 253 - 265.
  • 7Aubin J P, Ekeland I. Applied Nonlinear Analysis[M].New York:John Wiley and Sons, 1984.
  • 8R B Holmes. Geometric Function Analysis and Its Applications[M]. Springer- Verlay, New York, 1975.
  • 9Fort MK. Points of Continuity of Semi- continuous Functions[ J ]. Publ Math Debrecen, 1951,2:100 - 102.
  • 10Shih M H, Tan K C. Generalized Quasi - Variation Inequalities in Locally convex Topological Vector Spaces [J]. J Math Anal and Appl, 1985, 226:333- 343.

共引文献18

同被引文献28

  • 1CHANG Shin-sen,ZHANG Ying.Generalized KKM Theorem and Variational Inequalities[J].Math Anal Appl,1991,159:208-233.
  • 2YU J,XIANG S W.The Stability of the Sets of KKM Points[J].Nonlinear Analysis,2003,54:839-844.
  • 3AUBIN J P,EKELAND I.Applied Nonlinear Analysis[M].New York:John Wiley and Sons,1984.
  • 4HOLMES R B.Geometric Function Analysis and Its Applications[M].Springer-Verlay,New York,1975.
  • 5FORT M K J r.Points of Continuity of Semi-continuous Functions[J].Publication Mathematics Debrecen,1951,2:100-102.
  • 6KLEINE,THOMPSON A C.Theory of Correspondence[M].New York:John Wiley and Sons,1984.
  • 7陈剑尘,龚循华.向量优化问题中ξ-有效解的通有稳定性[J].南昌大学学报(理科版),2007,31(4):307-311. 被引量:3
  • 8GIANNESSI F. Vector Variational Inequalities and Vector Equilibria, In: F. Giannessi[M]. Kluwer, Dor- drecht, Mathematical Theories, Netherlands, 2000.
  • 9GONG X H. Continuity of the Solution Set to Para- metric Weak Vector Equilibrium Problems[J]. Jour- nal of Optimization Theory and Applications, 2008, 139:35-46.
  • 10GONG X H, YAO Y J. Lower Semicontinuity of the Set of Efficient Solutions for Generalized Systems[J]. Journal of Optimization Theory and Applications, 2008,138: 197-205.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部