期刊文献+

遗传蚁群融合算法求解航迹规划问题对比研究 被引量:2

Comparative Study on Hybrid Algorithm of Ant Colony System and Genetic Algorithm
下载PDF
导出
摘要 蚁群算法和遗传算法的融合是目前的研究热点之一,因此研究不同的遗传蚁群融合算法对算法的选择及其改进具有积极的意义。研究了遗传算法的编码方式、交叉方式及变异操作和蚁群算法的原理,且着重研究了遗传蚁群混合算法、蚁群遗传混合算法、同遗传算法整合的蚁群算法等三种融合算法,并应用这三种算法在求解航迹规划问题上进行了仿真研究,对所得的最优解从精度和快速性对其进行了分析和比较,可以得出遗传蚁群算法快速性最好但精度稍差,同遗传算法整合的蚁群算法精度最好但比较费时,蚁群遗传算法的精度和快速性介于前两种算法之间。 Because ant colony system (ACS) and genetic algorithm (GA) attract more and more eyes, it is important to study different hybrid algorithm of ACS and GA. This paper studies three hybrid algorithms, Genetic Algorithm Ant Colony System (GAACS), Ant Colony System with Genetic Algorithm (ACS(GA) ), and Ant Colony System integration Genetic Algorithm(ACSGA). It uses these three algorithms to solve flight trajectory planning and get reasonable result. The result of comparison shows that GAACS is fastest but has worst precision, ACSGA has best precision but is slowest, and ACS(GA) is between the former two.
作者 徐正军 唐硕
出处 《计算机仿真》 CSCD 2008年第4期65-68,83,共5页 Computer Simulation
关键词 遗传算法 蚁群算法 对比研究 混合算法 Genetic algorithm Ant colony system Comparative study Hybrid algorithm
  • 相关文献

参考文献4

二级参考文献17

  • 1胡小兵,黄席樾.蚁群优化算法及其应用[J].计算机仿真,2004,21(5):81-85. 被引量:31
  • 2Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 3Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 4Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.
  • 5Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914.
  • 6Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432.
  • 7DORIGO M, GAMBARDELLA LM. Ant Colonies for the Traveling Salesman Problem[ J]. BioSystems, 1997, 43(2) : 73 - 81.
  • 8MANIEZZO V, DORIGO M, COLORNI A. IRIDIA/94-28, The ant System Applied to the Quadratic Assignment Problem[ R]. Belgium:Universite de Bruxelles, 1994.
  • 9COLORNI A, DORIGO M, MANIEZZO V, et al. Ant System for Job-shop Scheduling[ J]. Belgian Journal of Operations Research,Statistics and Computer Science, 1994, 34(1) : 39 -53.
  • 10DORIGO M, GAMBARDELLA LM. Ant Colony System: A cooperative learning approach to the traveling salesman problem[ J]. IEEE Transactions on Evolutionary Computation, 1997, 1 (1) : 53 - 66.

共引文献290

同被引文献17

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部