摘要
蚁群算法和遗传算法的融合是目前的研究热点之一,因此研究不同的遗传蚁群融合算法对算法的选择及其改进具有积极的意义。研究了遗传算法的编码方式、交叉方式及变异操作和蚁群算法的原理,且着重研究了遗传蚁群混合算法、蚁群遗传混合算法、同遗传算法整合的蚁群算法等三种融合算法,并应用这三种算法在求解航迹规划问题上进行了仿真研究,对所得的最优解从精度和快速性对其进行了分析和比较,可以得出遗传蚁群算法快速性最好但精度稍差,同遗传算法整合的蚁群算法精度最好但比较费时,蚁群遗传算法的精度和快速性介于前两种算法之间。
Because ant colony system (ACS) and genetic algorithm (GA) attract more and more eyes, it is important to study different hybrid algorithm of ACS and GA. This paper studies three hybrid algorithms, Genetic Algorithm Ant Colony System (GAACS), Ant Colony System with Genetic Algorithm (ACS(GA) ), and Ant Colony System integration Genetic Algorithm(ACSGA). It uses these three algorithms to solve flight trajectory planning and get reasonable result. The result of comparison shows that GAACS is fastest but has worst precision, ACSGA has best precision but is slowest, and ACS(GA) is between the former two.
出处
《计算机仿真》
CSCD
2008年第4期65-68,83,共5页
Computer Simulation
关键词
遗传算法
蚁群算法
对比研究
混合算法
Genetic algorithm
Ant colony system
Comparative study
Hybrid algorithm