期刊文献+

基于小波变换的噪声检测快速独立分量分析

Independent Component Analysis of Noise Test Signal Based on Wavelet Transforms
下载PDF
导出
摘要 机械或电气设备工作噪声的测试分析是实时故障检测诊断的重要手段,通常情况下,传感器检测得到的信号是多个噪声源叠加的结果,可采用独立分量分析(ICA)方法分离出待检测对象信号。提出先对混合信号小波系数序列进行独立分量分析,再做小波逆变换得到分离信号。与直接的ICA比较,小波系数比原始信号的超高斯性更强,因此分离处理的收敛速度更快,分离效果更好;由于在小波变换的过程中可以引入阈值去噪,因此基于小波变换得到的分离结果较之常规方法有更强的抗噪能力。 The analysis and test of mechanical noise are important measures. Commonly, signal of sensor results from some aliasing sound sources. The signal of tested equipment can be separated by ICA method in order to analyse the fault signature. A new method is put forward to analyse the wavelet coefficient sequence of mixed signal for acquiring independent component, and to acquire separate signal by wavelet inverse transform. Since the kurtosis of wavelet coefficient is higher than that of original signal, this method can acquire better separating effect and faster convergence, compared with direct ICA.
出处 《计算机仿真》 CSCD 2008年第4期321-325,共5页 Computer Simulation
关键词 独立分量分析 超高斯 小波 电机噪声 ICA Super - Gauss signal Wavelet Mechanical noise
  • 相关文献

参考文献8

  • 1A Cichocki, S Iamari. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications [ M ]. John Wiley and Sons, 2002.
  • 2A Hyvarinen, et al. Independent Component Analysis [ M ]. John Wiley and Sons, 2001.
  • 3Hyvarinen, et al. Independent Component Analysis: algorithm and application [ J ]. Neural Network, 2000, 13 (4 - 5 ) : 411 - 430.
  • 4A Hyvarinen. A family of fixed - point algorithms for independent component analysis. Proc. Int. Conf. of Acoustics [ J]. Speech and Signal Processing, 1997. 3917 -3920.
  • 5A Hyvarinen, et al. A fast fixed - point algorithm for independent component analysis [ J ]. Neural Computation, 1997, 9 ( 7 ) : 1483 - 1492.
  • 6A Hyvarinen. Fast and robust fixed - point algorithm for independent component analysis [ J ]. IEEE Trans. on Neural Network, 1999, 10(3) : 626 -634.
  • 7S I Amari, et al. Adaptive blind signal processing-neural network approaches[C]. Proc. IEEE,1998, 86(10):2026-2049.
  • 8S Haykin ed. Unsupervised Adaptive Fihering [ M ]. Vol. Ⅰ Blind Source Separation, Chap. Ⅱ. John Wiley & Sons, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部