期刊文献+

贝叶斯分类器的应用 被引量:6

Application of Bayesian Classifier
下载PDF
导出
摘要 贝叶斯决策理论是统计模式识别中的一个基本方法。依据贝叶斯决策理论设计的分类器具有最优的性能,即所实现的分类错误率或风险在所有可能的分类器中是最小的,因此经常被用来衡量其他分类器设计方法的优劣。贝叶斯决策是一个很有效的分类工具,但它仍然存在着一定的错误率和风险,因此还需进一步的改善和完善。 Bayesian decision theory is a basic method of Statistical Pattern Recognition. The classification tools designed according to bayesian decision theory have optimal performance, i. e. , classification error rate or risks of the result are the lowest among all possible classification tools, so are frequently used to be the touchstones of other design method. Bayesian decision theory is a very effective classification tool,but it still bring in error rate and risks. So bayesian decision theory should be further improved.
作者 李娜
出处 《北京工业职业技术学院学报》 2008年第2期7-10,共4页 Journal of Beijing Polytechnic College
关键词 贝叶斯决策理伦 最优 分类错误率 分类工具 Bayesian decision theory optimal classification error rate classification tools
  • 相关文献

参考文献3

二级参考文献20

  • 1[1]Friedman N. Bayesian Network Classifiers. Machine Learning, 1997,29:131~163
  • 2[2]Duda R O, Hart P E- Pattern Classification and Scence Analysis, New York: John Wiley & Sons, 1973
  • 3[3]Langley P, et al. An analysis of Bayesian classifiers. In: Proc. Of the National Conf. On Artificial Intelligence (AAAI' 92). Menlo Park, CA: AAAI Press, 1992. 223~228
  • 4[4]Chow C K, Liu C N. Approximating discrete probability distributions with dependence tree. IEEE Trans. On Information Theory, 1968,14: 462~467
  • 5[5]Pearl J. Probabilistic Reasoning in Intelligent Systems. San Francisco ,CA: Morgan Kaufmann, 1988. 387~390
  • 6[6]Elkan C. Boosting and naive Bayesian learning : [Technical Report No. CS97-557]. Department of Computer Science & Engineering, Univ. Of California, 1997
  • 7David Maxwell. Learning equivalence classes of Bayesian - network structures[ J ]. Machine Learning, 2002 (2) :445 - 498.
  • 8Nir Friedman. Bayesian network classifiers[ J ]. Machine Learming, 1997,29:131-163.
  • 9Marco Ramcni. Robust Bayes clasifiers[J]. Artificial Intelligence,2001,125(1,2) :209- 226.
  • 10David Heckerman. Learning Bayesian networks: the combination of knowledge and statistical data[J ]. Machine Learning, 1995,20:197- 243.

共引文献81

同被引文献38

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部