期刊文献+

一类病毒自身发生变异的传染病模型的全局分析 被引量:10

Global Analysis of an Epidemic Model with Virus Auto Variation
下载PDF
导出
摘要 针对病毒变异前和变异后传染病患者具有不同的传染率情形,建立了一类分阶段传播的SIS模型,通过构造Liapunov函数和定性分析,得到病毒变异前和变异后传染病患者平衡点的存在条件以及它们的全局渐近稳定性. According to the differential incidences for the early virus and terminal virus patients, an epidemic model with stage-structure is established; the existence and the global asymptotic stability of equilibrium for the early virus and terminal virus patients are obtained by constructing Liapunov functions and qualitative analysis.
出处 《生物数学学报》 CSCD 北大核心 2008年第1期101-106,共6页 Journal of Biomathematics
基金 国家科技攻关计划项目(2004BA719A01) 空军工程大学理学院科研基金
关键词 传染病模型 平衡点 渐近稳定性 Epidemic model Equilibrium Asymptotical stability
  • 相关文献

参考文献7

  • 1Li Jian-quan, Ma Zhi-en. Qualitative analyses of SIS epidemic model with vaccination and varying total population size[J]. Mathematical and Computer, 2002, 35(11-12):1235-1243.
  • 2李建全,杨有社,杨国平.一类SIS流行病传染模型的全局分析[J].空军工程大学学报(自然科学版),2002,3(5):88-90. 被引量:8
  • 3李建全,杨友社.一类带有确定隔离期的传染病模型的稳定性分析[J].空军工程大学学报(自然科学版),2003,4(3):83-86. 被引量:14
  • 4Hethcote H W. The Mathematics of infectious diseases[J]. SIAM Review, 2000, 42(4):599-653.
  • 5Li Jia, Zhou Yicang, Ma Zhien. Epidmiological models for mutating pathogens[J]. SIAM Journal on Applied Mathematics, 2004, 65(1):1-23.
  • 6Andreasen V, Lin J, Levin S A. The dynamics of cocirculating influenza strains conferring partial crossimmunity[J]. 1997, 35:825-842.
  • 7胡宝安,陈博文,原存德.具有阶段结构的SIS传染病模型[J].生物数学学报,2005,20(1):58-64. 被引量:20

二级参考文献16

  • 1[1]Cooke K, van den Driessche P,Zou X. Interaction of maturation delay and nonlinear birth in population and epidemic models [J]. J Math Biol, 1999, 39(2): 332-352.
  • 2[2]Zhou J, Hethcote H W. Population size dependent incidence in models for disease without immunity [J]. J Math Biol, 1994, 32(5): 809-834.
  • 3[3]ZHANG Zhi-fen, DING Tong-ren. Qualitative theory of differential equations [M]. Translations of Mathematical Monographs:Rhode Island, 1992.
  • 4Hethcote H W. Qualitative analyses of communicable disease models [ J ]. Math Biosci, 1976,28 (3) : 335 - 356.
  • 5Hethcote H W, Gao L Q. Disease transmission models with density -dependent demographics [ J]. J Math Biol, 1992,30(6) :717 -731.
  • 6Feng Z, Thieme H R. Recurrent outbreaks of childhood disease revisited: The impact of isolation [J]. Math Biosci, 1995,128(2) : 93 - 130.
  • 7Feng Z, Thieme H R Endemic with arbitrarily distributed periods of infection, I : General theory [ J ]. SlAM J Appl Math,2000,61(7) : 803 -833.
  • 8Feng Z, Thieme H R. Endemic models with arbitrarily distributed periods of infection, Ⅱ : Fast disease dynamics and permanent recovery [J]. SIAM J Appl Math, 2000,61(8) :983 -1012.
  • 9Lasalle J P. The stability of dynamical systems. Regional conference series Applied Mathematics [ M]. SIAM: Philadelphia,1976.
  • 10Walter G, Alello, Freedman H I. A time-delay of single species growth with stage structure[J]. Mathematical Bioscience, 1990, 101:139-153.

共引文献35

同被引文献65

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部