期刊文献+

利用数学形态学和方向窗的小波域双重局部维纳滤波图像去噪算法 被引量:7

Wavelet-Based Image Denoising via Doubly Local Wiener Filtering Using Directional Windows and Mathematical Morphology
下载PDF
导出
摘要 基于小波的图像去噪算法是目前图像处理研究的一个热点。该文提出了一种结合椭圆型方向窗和数学形态学的小波域双重局部维纳滤波图像去噪算法。该算法同时利用了小波域子带的方向信息和图像本身所固有的几何结构:首先使用数学形态学把图像分成纹理区域和光滑区域两部分,然后结合椭圆型方向窗去估计小波域方向子带中每一点的信号方差,最后使用双重维纳滤波器对含噪图像进行去噪。实验结果表明该算法的去噪效果优于其它的采用二维可分离实小波进行图像去噪的算法。 Wavelet-based image denoising algorithms is a hot point in image processing applications. In this paper, a doubly local Wiener filtering algorithm using elliptic directional window and mathematical morphology is proposed, in which the mathematical morphology is first used to divide the image into texture and smooth regions, and then combine the elliptic directional window to estimate the signal variance of each wavelet coefficients in different oriented subbands, finally the doubly local Wiener filtering is used to denoise the observed image. Experiment results show that the proposed algorithm is better than the existing image denoising algorithms using 2-D real separable wavelets.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第4期885-888,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60472086)资助课题
关键词 图像去噪 双重局部维纳滤波 椭圆型方向窗 数学形态学 Image denoising Doubly local Wiener filtering Elliptic directional window Mathematical morphology
  • 相关文献

参考文献11

  • 1Eom I K and Kim Y S. Wavelet-based denoising with nearly arbitrarily shaped windows. IEEE Signal Processing Letters, 2004, 11(12): 937-940.
  • 2Kazubek M. Wavelet domain image denoising by thresholding and Wiener filtering. IEEE Signal Processing Letters, 2003, 10(11): 324-326.
  • 3Fan G and Xia X G. Image denoising using local contextual hidden Marcov model in the wavelet domain. IEEE Signal Processing Letters, 2001, 8(5): 125-128.
  • 4Mihcak M K, Kozinsev I, and Ramchandran K, et al.. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, 1999, 7(6): 300-303.
  • 5Chang S G, Yu B, and Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. on Image Processing, 2000, 9(9): 1522-1531.
  • 6Sendur L and Selesnick I W. Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters, 2002, 9(12): 438-441.
  • 7Ghael S P, Sayeed A M, and Baraniuk R G. Improved wavelet denoising via empirical Wiener filtering. Proceedings of SPIE, San Diego, 1997: 389-399.
  • 8Portilla J, Strela V, and Wainwright M J, et al.. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. on Image Processing, 2003, 12(11): 1338-1351
  • 9Shui P L. Image denoising algorithm via doubly local wiener filtering with directional windows in wavelet domain. IEEE Signal Processing Letters, 2005, 10(12): 681-684.
  • 10Eom I K and Kim Y S. Spatially adaptive denoising based on mixture modeling and interscale dependencies of wavelet coefficients. IEEE Int. Conf. Neural Networks & Signal Processing. Nanjing, China, 2003: 14-17.

同被引文献64

引证文献7

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部