期刊文献+

一种距离聚焦后的SAR原始数据压缩算法 被引量:1

An Algorithm for SAR Raw Data Compression after Range Focusing
下载PDF
导出
摘要 由于合成孔径雷达(SAR)原始数据的相关性很低,直接压缩原始数据是比较困难的。该文提出一种新算法,先对SAR原始数据作距离聚焦处理,使其在方位向具有较强的相关性,再沿方位向作矢量线性预测,并对预测残差序列作分块自适应量化。结合一组实测SAR原始数据,用3种算法分别进行了压缩和解压缩,并计算了数据域及图像域信噪比,给出了3种压缩算法所成的图像。实验表明,在相同比特率条件下,该文算法得到的数据域信噪比和图像域信噪比均比BAQ算法高。该文算法的计算量远小于有关文献给出的距离聚焦后的压缩方法。 It is difficult to directly compress Synthetic Aperture Radar (SAR) raw data for its low relativity. In this paper, a new algorithm is put forward. Range focusing is imposed to SAR raw data, which makes it have comparative high relativity, then a vector linear prediction is performed along the azimuth direction, and block adaptive quantization is used to the prediction error series. By using a real SAR raw data, compression and decompression are made respectively. The SQNR and SDNR are achieved. The images correspond to the three algorithms are gained. The experiments manifest that with same bit rate, SQNR and SDNR after using the algorithm proposed in this paper surpass that of BAQ. The calculation in this paper is far less than that of compression method after range focusing advised in corresponding reference.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第4期921-924,共4页 Journal of Electronics & Information Technology
基金 航空科学基金(05D52027)资助课题
关键词 合成孔径雷达 距离聚焦 矢量线性预测 信噪比 块自适应量化 比特率 Synthetic Aperture Radar (SAR) Range focusing Vector linear prediction Signal to Noise Ratio (SNR) Block Adaptive Quantization (BAQ) Bit rate
  • 相关文献

参考文献11

  • 1Kwok R and Johnson W T K. Block adaptive quantization of Magellan SAR data[J]. IEEE Trans. on Geoseienee and Remote Sensing, 1989, 27(4): 375-383.
  • 2朱永明,朱兆达.一种改进的UPQ算法在SAR原始数据压缩中的应用[J].空载雷达,2004(1):25-29. 被引量:4
  • 3关振红,朱兆达,朱岱寅.块自适应球形矢量量化算法压缩SAR原始数据[J].航空学报,2006,27(1):82-86. 被引量:7
  • 4Benz U, Strodl K, and Moreia A. A comparison of several algorithms for SAR raw data Compression[J]. IEEE Trans. on Geoseienee and Remote Sensing, 1995, 33(5): 1266-1276.
  • 5Michael W, Marcellin, and Fischer T R. Trellis coded quantization of memoryless and Gauss-Markov sources[J]. IEEE Trans. on Communications, 19907 38(1): 82-93.
  • 6Poggi G, Ragozini A R P, and Verdoliva L. Compression of SAR data through range focusing and variable-rate vector quantization[J]. IEEE Trans. on Geoseience and Remote Sensing, 2000, 38(3): 1282-1289.
  • 7D'Elia C, Poggi G, and Verdoliva L. Compression of SAR data through range focusing and variable-rate trellis-coded quantization[J]. IEEE Trans. on Image Processing, 2001, 10(9): 1278-1286.
  • 8Cuperman V and Gersho A. Vector predictive coding of speech at 16kb/s[J]. IEEE Trans. on Communications, 1983, 33(7): 685-696.
  • 9Magli E and Olmo G. Lossy predictive coding of SAR raw data[J]. IEEE Trans. on Geoseience and Remote Sensing, 2003, 41(5): 977-987.
  • 10王晓军,孙洪,管鲍.SAR图像相干斑抑制滤波性能评价[J].系统工程与电子技术,2004,26(9):1165-1171. 被引量:20

二级参考文献30

  • 1Kenneth, Castleman R. Digital Image Processing[M]. Prentice Hall,Inc. 1996. 110-111.
  • 2Lopes A, Touzi R. Nezry E. Adaptive Speckle Filters and Scene Heterogeneity[J]. IEEE Trans. on Gcesei. Remote Sensing, 1990, 28(11): 992- 1000.
  • 3Xie Hua, Pierce L E, Ulaby F T. SAR Speckle Reduction Using Wavelet Denoising and Markov Random Field Modeling[J]. IEEE Trans. on Geoscience and Remote Sensing, 2002,40(10): 2196-2211.
  • 4Xie Hua, Ulaby F T, Pierce L E. Performance Metrics for SAR Speckle-Suppression Filters [A]. Geescience and Remote Sensing Symposium, 1999. IGARSS ' 99 Proceedings[C]. IEEE 1999Intarnational, 1999, 3(28-2):1540- 1542.
  • 5Touzi R, Lopes A, Bousquet P. A Statistical and Geometrical Edge Detector for SAR Images[J]. IEEE Trans. on Geosci ence and Remote Sensing, 1988, 26(11): 764-773.
  • 6Hagg Wilhlm, Sties Manfre. Efficient Speckle Filtering of SAR Images[C]. Internaiional Geoseience and Remote Sensing Symposium,Pasadena, California, USA, 1994. 2140- 2142.
  • 7Foucher S, Benie G B, Boucher J M. Multiscale MAP Filtering of SAR Imagesg[J]. IEEE Trans. on Image Processing, 2001, 10(1) :49- 60.
  • 8Lee J S. Digital Image Enhancement and Noise Filtering by Use LocalStatistics[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1980, 2(2): 165 - 168.
  • 9Frost V S, Stiles J A, Shanmugan KS,et al. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise [J].IEEE Trans. on Pattem Analysis and Machine Intelligence, 1982, 4(2): 157- 166.
  • 10Kuan DT, Sawchuk A A, Strand TC,et al. Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1985,7(2): 165 - 177.

共引文献25

同被引文献18

  • 1关振红,朱岱寅,朱兆达.SAR原始数据压缩技术研究[J].南京航空航天大学学报,2005,37(3):325-329. 被引量:4
  • 2关振红,朱兆达,朱岱寅.使用变换域编码技术压缩SAR原始数据[J].电讯技术,2006,46(5):122-126. 被引量:1
  • 3CHEN S B,DONOHO D L,SAUNDERS M A. Atomic decomposition by basis pursuit[J].Society for Industrial and Ap-plied Mathematics,2001,(01):129-159.doi:10.1137/S003614450037906X.
  • 4唐禹.高分辨率SAR成像算法及实时处理技术的研究[D]北京:中国科学院研究生院,2006.
  • 5Kwok R,Johnson W T K. Block adaptive quantization of magellan SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,1989,(04):375-383.doi:10.1109/36.29557.
  • 6Benz U,Strodl K,Moreira A. A comparison of several algorithms for SAR raw data compression[J].IEEE Transactions on Geoscience and Remote Sensing,1995,(05):1266-1276.doi:10.1109/36.469491.
  • 7Moreira A,Blaser F. Fusion of block adaptive and vector quantizer for efficient SAR data compression[A].Tokyo:IEEE Press,1993.1583-1583.
  • 8Donoho D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 9Herman M,Strohmer T. Compressed sensing radar[A].Rome:IEEE Press,2008.1509-1512.
  • 10Cetin M,Moses R L. SAR imaging from partial-aperture data with frequency-band omissions[A].IEEE Press,2005.32-43.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部