期刊文献+

微粒群算法优化化工建模训练集 被引量:6

Particle swarm optimization optimizing training set in chemical engineering modeling
下载PDF
导出
摘要 提出两种均以微粒群(PSO)算法对原始训练集随机抽样优化,再结合机器学习算法建立预测模型的PSO算法优化化工建模训练集的思路。思路1首先以模型交叉验证的均方误差函数mse最小为目标优化训练集,再通过对验证集预测,从平行运行得到的多个优化训练集中确定最优训练集用于建模。思路2借鉴提高BP神经网络泛化能力的初期终止(early stop)法,以对验证集预测的mse最小为目标优化训练集,再通过对测试集预测,从平行运行得到的多个优化训练集中确定最优训练集用于建模。通过仿真实验研究和对某炼油厂调和汽油生产数据的具体分析应用,表明本文思路可以较大幅度提高模型的预测准确性,在化工建模中具有推广应用价值。 Two methods were proposed to optimize the training set of chemical engineering modeling based on particle swarm optimization (PSO) with random sampling. The forecasting model was formed by integrating PSO and other machine learning arithmetic which was used to model. In method 1 the optimized training set was acquired firstly by optimizing the training set which set the goal of minimizing the mean of squared errors (mse) in cross validation, secondly by making the prediction to the validation set, and lastly by choosing the one that gave the best prediction results among the optimized training sets. In method 2 the thought of early stop in BP neural network was adopted. The optimized training set was acquired firstly by optimizing the training set which set the goal of minimizing the mse to the validation set, secondly by making the prediction to the testing set, and lastly by choosing the one that gave the best prediction results among the optimized training sets. These two methods were used to deal with the simulation data and the gasoline blending data collected from a refinery. The results showed that the methods could improve the accuracy of prediction greatly. These two methods are worth generalizing in chemical engineering modeling in the future.
出处 《化工学报》 EI CAS CSCD 北大核心 2008年第4期964-969,共6页 CIESC Journal
基金 四川省企业信息化项目计划(2005-199-16)
关键词 微粒群算法 优化训练集 仿真 化工建模 particle swarm optimization optimization of training set simulation chemical engineering modeling
  • 相关文献

参考文献8

  • 1Kennedy J,Eberhart R.Particle swarm optimization//Proc.IEEE Int'l.Conf.on Neural Networks(Ⅳ).Piscataway,NJ:IEEE Service Center,1995:1942-1948
  • 2Chen Nianyi(陈念贻),Qin Pei(钦佩),Chen Ruiliang(陈瑞亮),Lu Wencong(陆文聪).Application of Pattern Recognition Methods in Chemistry and Chemical Industry(模式识别方法在化学化工中的应用).Beijing:Science Press,2000:48-49
  • 3Wen Xin(闻新),Zhou Lu(周露),Li Xiang(李翔),Zhang Baowei(张宝伟).Neural Networks Simulation and Its Application Based on Matlab(神经网络仿真与应用).Beijing:Science Press,2003:280-281
  • 4Zeng Jianchao(曾建潮),Jie Qian(介倩),Cui Zhihua(崔志华).Particle Swarm Optimization Algorithm(微粒群算法).Beijing:Science Press,2004:12-53
  • 5Shi Y,Eberhart R C.A modified particle swarm optimizer//Proceedings of the IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Press,1998:69-73
  • 6Suykens J A K,De Brabanter J,Lukas L,et al.Weighted least squares support vector machines:robustness and sparse approximation.Neurocomputing,2002,48(1):85-105
  • 7阎威武,常俊林,邵惠鹤.一种贝叶斯证据框架下支持向量机建模方法的研究[J].控制与决策,2004,19(5):525-528. 被引量:21
  • 8张运陶,段启彬,白春艳,杨晓丽,郑伟.计算机辅助汽油调合设计[J].化工学报,2006,57(7):1732-1735. 被引量:5

二级参考文献10

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1999.
  • 2[3]Mackay D J C. Probable network and plausible predictions-A review of practical Bayesian methods for supervised neural networks [J]. Network Computation in Neural Systems, 1995, 6: 469-505.
  • 3[4]Kowk J T. The evidence framework applied to support vector machines [J]. IEEE Trans on Neural Network,2000, 11(5): 1162-1173.
  • 4[5]Suykens J A K. Nonlinear modeling and support vector machines [A]. Proc of the 18th IEEE Conf on Instrumentation and Measurement Technology [C].Budapest, 2001. 287-294.
  • 5Deng Naiyang(邓乃扬),Tian Yingjie(田英杰).New Algorithms in Data Mining-Support Vector Machine(数据挖掘中的新方法-支持向量机).Beijing:Science Press,2004:245-255
  • 6Wang Erhua(王尔华).Quantative Drug Design(定量药物设计).Beijing:People's Medical Publishing House,1983:201-217
  • 7Gestel T V,Suykens J A K,Brabanter J D,Moor B D,Vandewalle J.Least squares support vector machine regression for discriminant analysis.IEEE,2001:2445-2450
  • 8ScholkopfB SmolaAJ WilliamsonRC BartlettPL.New support vector algorithms[J].Neural Computation,2000,12:1207-1245.
  • 9安娜,潘立登,陈标华,李成岳,牛学坤.基于RBF神经网络的流向变换催化燃烧反应器的温度预测[J].磁流体发电情报,2004,55(3):360-365. 被引量:4
  • 10刘涵,刘丁,郑岗,梁炎明,宋念龙.基于最小二乘支持向量机的天然气负荷预测[J].化工学报,2004,55(5):828-832. 被引量:48

共引文献24

同被引文献79

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部