摘要
采用微粒群优化的种群搜索方式,融合了局部搜索和全局搜索,引入了模拟退火算法和遗传算法思想,利用模拟退火随机概率来避免陷入局部最优,提出了一种混合微粒群优化算法,以便更好地满足用户期望的服务质量,解决网格服务工作流调度问题.网格仿真试验结果显示:对于具有全局QoS约束条件的Web服务选择,在执行效率上混合微粒群优化算法明显优于其他混合遗传算法,可在较短时间内获得较好的解,是求解多目标网格服务工作流调度问题的有效方法.
Workflow schedule consisting of grid service is a NP problem. QoS-aware was introduced in grid workflow. Particle swarm optimization (PSO) is discussed, which combines local search and global search. An easily implemented hybrid particle swarm optimization algorithm (HPSOA) is presented for the multi-objective grid service-workflow scheduling problem by using simulated annealing (SA) and genetic algorithm. Experiment results show that this algorithm is available and better than some traditional hybrid genetic algorithms (HGA), and that it is a viable and effective approach to the multi-objective grid service-workflow scheduling problem.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第4期45-47,共3页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(60673177)
浙江省自然科学基金资助项目(Y105109)
浙江省教育厅科研项目(20070284)
浙江工业大学科技发展基金资助项目(200511)
关键词
网格技术
工作流
混合微粒群优化算法
服务质量感知
混合遗传算法
grid technology
workflow
hybrid particle swarm optimization algorithm
QoS(quality of service)-aware
hybrid genetic algorithm