期刊文献+

一种组合类别信息的非负矩阵分解方法及其应用

Method of Class-information-incorporated Non-negative Matrix Factorization and Its Application
下载PDF
导出
摘要 基于非负矩阵分解理论,提出一种新的有监督的特征提取方法,它具有二个特点:一是在特征提取过程中它直接利用训练样本的类别信息,二是在计算上仍然采用与非负矩阵分解方法相同数学公式,因此这种新特征提取方法被称为组合类别信息的非负矩阵分解(CINMF)方法。另外,在分类时本文提出了基于两种特征融合的分类策略进一步提高CINMF方法的识别率。通过在YALE人脸库和ORL人脸库上进行实验,结果表明本文提出的新方法在识别率方面整体上好于原非负矩阵分解方法,甚至超过常用的主成分分析法(PCA)。 A novel supervised feature extraction method based on non-negative matrix factorization (NMF) was proposed. The new method has two traits: one is to sufficiently utilize a given class label of training sample in feature extraction and the other is to still follow the same mathematical formulation as NMF, so the new feature extraction method is named class-information-incorporated non-negative matrix factorization (C1NMF). Besides, in order to further improve recognition rate, a new classification strategy was proposed based on fusion of two kinds of feature vector. The experimental results on YALE face database and ORL face database show that the new method is better than original NMF in terms of recognition rate, and even outperform PCA.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第7期1803-1807,共5页 Journal of System Simulation
基金 国家自然科学基金资助项目(60472060,60632050) 江苏省高校自然科学基金项目(06KJD520085) 南京林业大学人才基金资助项目(2002-10)
关键词 非负矩阵分解 组合类别信息的非负矩阵分解 特征提取 人脸识别 non-negative matrix factorization (NMF) class-information-incorporated NMF (CINMF) feature extraction face recognition
  • 相关文献

参考文献12

  • 1Turk M, Pentland A. Eigenfaces for Recognition [J]. Journal of Cognitive Neuroscience (S0898-929X), 1991, 3(1): 71-86.
  • 2Turk M, Pentland A. Face Recognition Using Eigenfaces [C]//Proc. IEEE Conf. on Computer Vision and Pattern Recognition. Osaka, Japan: IEEE Computer Society, 1991: 586-591.
  • 3Lee D D, Seung H S. Leaming the parts of objects by non-negative matrix factorization [J]. Nature (S0028-0836), 1999, 401(6755): 788-791.
  • 4Li S Z, Hou X W, Zhang H J. Learning spatially localized, parts-based representation [C]// Int. Conf. Computer Vision and Pattern Recognition. Kauai, Hawaii: IEEE, 2001, 1: 207-212.
  • 5Buciu loan, Pitas Ioannis. Application of non negative and local non negative matrix factorization to facial expression recognition [C]// Proceedings of the 17th IEEE International Conference on Pattern Recognition (ICPR'04). Cambridge, UK: IEEE, 2004: 1051-4651.
  • 6Chen X, Gu L, Li S Z, Zhang H J. Learning representative local features for face detection [C]// IEEE Proceedings of Computer Vision and Pattern Recognition. Kauai, Hawaii: IEEE, 2001, 1: 1126-1131.
  • 7Zafeiriou S, Tefas A, Pitas I. Discriminant NMFfaces for Frontal Face Verification [C]//. Machine Learning for Signal Processing, Mystic. USA: IEEE Workshop, 2005: 355-359.
  • 8Chen Songcan, Sun Tingkai. Class-information-incorporated principal component analysis, Neurocomputing (S0925-2312), 2005, 69(2): 216-223.
  • 9Lee D D, Seung H S, Algorithms for non-negative matrix factorization [C]// Proceedings of Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2001, 13: 556-562.
  • 10Feng T, Li S Z, Shum H Y, Zhang H J. Local Non-Negative Matrix Factorization as a Visual Representation [C]// Proceedings of the 2nd International Conference on Development and Learning (IEEE ICDL.02). Cambridge, MA: MIT Press, 2002: 178-183.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部