期刊文献+

基于散射体模型的PolInSAR数据模拟反演研究 被引量:3

PolInSAR Data Simulation for Inversion Study Based on Scattering Model
下载PDF
导出
摘要 极化干涉合成孔径雷达(PolInSAR)测量是一种集极化雷达(PolSAR)和干涉雷达(InSAR)测量技术于一体的新的对地观测技术,利用极化干涉雷达数据提取地表植被垂直结构参数是当前极化干涉研究的热点问题。然而现在国内外适用于PolInSAR处理的数据都是重复轨道数据,其中应用广泛的是SIR-C/X-SAR数据,其成像时间在10多年前,成像区域植被高度及衰减系数大小无法考证,因此利用该数据进行反演,反演结果的精度无法验证,故有必要对极化干涉数据进行模拟来验证PolInSAR反演算法的优劣。提出了一种便于验证反演算法的基于散射体模型的PolInSAR数据模拟方法,并利用基于统计特征的反演算法验证了该数据的有效性。 Polarimetric interferometric SAR (PolInSAR) is a new advanced technique recently based on measurement techniques of polarimetric SAR and interferometric SAR, and making use of PolInSAR data for retrieving the vertical structure parameters of the vegetation layer becomes the hot research topic of the PolInSAR at present. But the data which has been widely used for PolInSAR processing is acquired in the double-pass model, especially the data from SIR-C/X-SAR system which was imaged ten years ago, and the vegetation parameters can not be exactly obtained, and the inversion precision of this data can not be validated, so it is very necessary to simulate the PolInSAR data to judge of the different inversion algorithms. Anew method was proposed to simulate the PolInSAR data, and the ML inversion algorithm was made to prove the validity of this method.
作者 陈兵 张平
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第8期2200-2202,共3页 Journal of System Simulation
关键词 极化干涉 反演 数据模拟 散射体模型 PolInSAR inversion data simulation scattering model
  • 相关文献

参考文献8

  • 1张朋,黄金,郭陈江,许家栋.合成孔径雷达成像三维地形目标模拟方法[J].系统仿真学报,2005,17(10):2403-2405. 被引量:4
  • 2张朋,张超,郭陈江,许家栋.建筑物的SAR回波信号模拟方法[J].系统仿真学报,2006,18(7):1742-1744. 被引量:3
  • 3Luca Pipia X F. Generation of PolSAR and PollnSAR Data for Homogeneous Distributed Targets Simulation. [C]//PolInSAR 2005, Frascati, Italy on 17-21 January 2005. ESRIN Frascati Italy: ESA, 2005.
  • 4R N Treuhaft, P R Siqueira. Vertical structure of vegetated land surface from interferometric and polarimetfic radar. [J]. Radio Science: (S0048-6604), 2000, 35(1): 141-177.
  • 5K P Papathanassiou, S R Ctoude. Single-Baseline Polarimetric SAR Intefferometry [J]. IEEE transactions on geoscience and remote sensing (S0196-2892), 2001, 39(11): 2352-2363.
  • 6L Ferro-Famit, E Pottier, J S Lee. Unsupervised Classification and Analysis of Natural Scenses from Polarimetric Interferometric SAR Data. [C]//IEEE Proceeding of IGARSS'01(0-7803-7031-7). Sydney Australia: IEEE, 2001: 2715-2717.
  • 7Tabb M, T Flynn, R Carande. Full maximum likelihood inversion of polinsar scattering models [C]// Proceeding of IGARSS'04 (0-7803-8742-2). Anchorage Alaska USA: IEEE, 2004: 1232-1235.
  • 8Ftynn T, M Tabb, R Carande. Direct Estimation of Vegetation Parameters from Covariance Data in Palarimetric SAR Interferometry [C]// Proceeding of IGARSS'02(0-7803-7536-X). Toronto Canada: IEEE, 2002: 1908-1910.

二级参考文献10

  • 1李凌杰,王建国,黄顺吉.基于真实反射场景的SAR原始回波数据模拟[J].电子科技大学学报,1996,25(6):566-568. 被引量:17
  • 2Oiorgio FrancescheRi,et a1.SARAS:A synthetic aperture radar raw signal simulation[J].IEEE Trans.Geoscience and Remote Sensing,1992,30(1):110-122.
  • 3Giorgio Franceschetti, Maurizio Migliaccio, Daniele Riccio. SAR raw signal simulation of actual ground sites described in terms of sparse input data [J]. IEEE Trans. Geoscience and Remote sensing, 1994,32(6): 1160-1168.
  • 4M Gelautz. SAR image simulation and analysis of alpine terrain [J].ISPRS Journal of Photogrammetry & Remote Sensing, 1998, 53: 17-38.
  • 5Jerry L Eaves, Edward K Reedy. Principles of Modem Radar [M].New York: Artech House, 1988.
  • 6Giorgio Franceschetti,et al.SARAS:A synthetic aperture radar raw signal simulation[J].IEEE Trans.Geoscience and Remote Sensing (S0196-2892/92),1992,30(1):110-122.
  • 7Giorgio Franceschetti,Antonio Iodice,Daniele Riccio,Giuseppe Ruello.SAR raw signal simulation for urban structures[J].IEEE Trans.Geoscience and Remote sensing (S0196-2892/03),2003,41(9):1986-1994.
  • 8F T 乌拉比,R K 穆尔,冯健超.微波遥感第二卷:雷达遥感和面目标的散射、辐射、理论[M].北京:科学出版社,1987.
  • 9Jin Au Kong,吴季.电磁波理论[M].北京:电子工业出版社,2003.
  • 10汤志伟,赵志钦,黄顺吉.SAR原始数据的模拟研究[J].电子科技大学学报,2000,29(1):17-19. 被引量:13

共引文献5

同被引文献21

  • 1刘慧,周荫清,徐华平,李春升.基于区域增长的相位展开新算法[J].仪器仪表学报,2006,27(z3):2232-2234. 被引量:4
  • 2邹斌,张腊梅,孙德明,王伟.极化干涉合成孔径雷达图像信息提取技术的进展及未来[J].电子与信息学报,2006,28(10):1979-1984. 被引量:5
  • 3杨磊,赵拥军,王志刚.基于酉ESPRIT算法的极化干涉相位估计[J].测绘科学,2007,32(2):57-59. 被引量:5
  • 4吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[J].电子与信息学报,2007,29(5):1258-1262. 被引量:51
  • 5PAPATHANASSIOU K P, CLOUDE S R. Single- baseline polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(11):2352-2363.
  • 6GUILLASO S, FERRO-FAMIL L, et al. Building characterization using L-band polarimetric interferometric SAR data[J].IEEE Geoscience and Remote Sensing Letters, 2005,2(3) : 347-351.
  • 7YAMADA H, YANAGUCHI Y, et al. Polarimetric SAR Interferometry for forest canopy analysis by using the super-resolution method[C]. International Geoscience and Remote Sensing Symposium, Sydney, Australian, 2001,3 : 1101-1103.
  • 8YAMADA H, SATO K, et al. Interferometric Phase and coherence of forest Estimated by ESPRIT-based polarimetrie SAR interferometry [C]. International Geoscienee and Remote Sensing Symposium, Toronto, Canada, 2002,2 : 1426-1428.
  • 9BAI L, CAO F, HONG W. A New Approach to Estimate Forest Parameters Using Dual-Baseline PolInSAR Data[C]. 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 2008.
  • 10TEBALDINI S, ROCCA F. SAR Tomography over decorrelating targets for forestry applications[C].7th European SAR Conference, Friedrichshafen, Germany, 2008.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部