摘要
研究由两个Smarandache函数构成的一个特殊数论函数。应用初等方法来研究序列1/(sK(n))ep(n),并给出一个它的渐进公式。
For any fixed positive integer k 〉 1 and any positive integer n, let Sk (n)—— denotes the largest positive integer m satisfying m^k │ n, and for any fixed prime p, let ep (n) denotes the largest nonnegative integer α satisfying p^a│n ,the elementary properties of sequences (sk(n))^ep(n)-- ----1 is studied with elementary method and an interesting asymptotic formula for it is given.
出处
《科学技术与工程》
2008年第7期1762-1763,1765,共3页
Science Technology and Engineering
关键词
素数
渐进公式
黎曼ζ
函数
Prime factor asymptotic formula Riemann zeta-function