期刊文献+

计算机视觉和人工神经网络技术在花生仁外观检测中的应用

Application in Peanut Kernel Appearance Examination of Computer Vision and Manual NN
下载PDF
导出
摘要 本文运用计算机视觉和人工神经网络技术对花生仁检测进行了研究。通过MATLAB对花生仁图象进行数字处理,获取相关数据和参数,建立了破损花生仁与其颜色参数之间的数学关系,并通过此关系自动识别完好与破损花生仁,探索了农产品现代检测方法和手段。 The article research on peanut kernel appearance examination based on the technology of computer vision and manual NN. The image digital processing has been done of peanut kernel through MATLAB. Then gained the data and parameter, build the math connection of dilapidation peanut kernel and its color parameter. Then automatism distinguish intact and dilapidation peanut kernel. Search the modern times method and means of farm produce.
出处 《现代农业装备》 2008年第3期36-40,共5页 Modern Agricultural Equipment
关键词 花生仁 外观检测 计算机视觉 人工神经网络 MATLAB peanut kemel appearance examination computer vision manual NN MATLAB
  • 相关文献

参考文献6

二级参考文献19

  • 1杨秀坤,陈晓光,马成林,方进,于立彪.用遗传神经网络方法进行苹果颜色自动检测的研究[J].农业工程学报,1997,13(2):173-176. 被引量:31
  • 2Guyer D E, et al. Machine vision and image processing for plant identification. Transactions of the ASAE, 1988, 29(6): 1500
  • 3Zhang N Q, et al. Effective criteria for weed identification in wheat fields using machine vision. Transactions of the ASAE, 1995, 38(3): 965
  • 4Burks T F, et al. Backpropagation neural network design and evaluation for classifying weed species using color image texture. Transactions of the ASAE, 2000, 43(4):1029
  • 5Tarbell K A, et al. Spatial and spectral characteristics of corn leaves collected using computer vision. Transactions of the ASAE, 1991,34(5): 2256
  • 6Matas J, et al. Color-based object recognition under spectrally nonuniform illumination. Image & Vision Compute, 1995, 13(9): 663
  • 7Woebbecke D M, et al. Calibration of large field-of-view thermal and optical sensors for plant and soil measurements. Transactions of the ASAE, 1994, 37(2): 669
  • 8Woebbecke D M, et al. Shape features for identifying young weeds using image analysis. Transactions of the ASAE, 1995, 38 (1):271
  • 9Woebbecke D M, et al. Color indices for weed identification under various soil, residue and lighting conditions. Trans of the ASAE,1995, 38(1): 259
  • 10Franz E, et al. Algorithms for extracting leaf boundary information from digital images of plant foliage. Transactions of ASAE, 1995,38(2):625

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部