期刊文献+

雅鲁藏布江大峡谷地貌响应时间域的定量计算 被引量:16

QUANTITATIVE ANALYSIS OF GEOMORPHOLOGIC RESPONSE TIME-SCALE OF THE YARLUNG ZANGBO GREAT CANYON
下载PDF
导出
摘要 基岩河道流域地区的地貌演化定量化研究在构造-气候-表面过程关系的探讨中具有十分重要的意义。定量化的分析主要关注气候、构造等外在因素以及河流内在调节机制对地貌演化的影响。本文总结了关于基岩河道流域地貌分析的定量方法和模型的研究进展,并利用DL模型对雅鲁藏布江中下游河段进行了演算,结果显示该地区在稳定状态下地貌演化时间域在0.065~0.420Ma之间,反映了该地区快速的地貌演化过程。 The quantitative research of geomorphologic evolution in bedrock channel fluvial landscape plays a significant role in the discussion of the relationship among tectonics, climate, and surface process. The quantitative analysis focuses on external factors such as tectonics and climate and on the influence added by the internal tuning mechanism of the rivers. The research progresses of the quantitative methods and models which focus on the geomorphologic analysis in bedrock channel drainage are summarized in this paper. The DL model is used as the main calculating method, combined with specific regional conditions. The response to the variation of climate and tectonic perturbation are analyzed quantitatively. Response to climate variation or tectonic perturbation,or both ,the landscape changes and the response time scale changes in different zones. The Yarlung Zangbo Great Canyon has the most complicated structure and the most intense rainfall and thus can be used as the best natural laboratory. It is located at the middle of the East Himalayan tectonic core parts. Theresults show that since 0.15Ma the uplift rate of the Grand Canyon region reaches at 30mm/a. It is the fastest uplift rate observed on the Earth. During the same period the Yarlung Zangbo Grand Canyon area has the largest rainfal all over the world. Therefore the quantitative research of geomorphologic response time-scale in the area to tectonic disturbance and climate changes not only can help further understand the landscape evolutionary history, but also has great significance to study the formation of complicated river network in that area. We use the DL model to calculate the middle and lower reaches of the Tsangpo. The results show that the geomorphologic evolution time-scale is between 0. 065 -0. 420Ma,revealing a rapid geomorphologic evolution in the research area on a steady tectonic state. It is between 0. 11 -0.24Ma when the erosion rate is fixed; between 0.09 - 0.27Ma when the uplift rate is fixed; between 0. 065 - 0. 170Ma when the erosion rate is unanimous; and when the erosion only occurred under the nickpoint of river, it is between 0.24 - 0.42Ma. Compared with results in other regions,the geomorphologic response time-scale of the Yarlung Zangbo Great Canyon shows a more quick rate of geomorphologic evolution. Therefore when the river network system evolution and the geomorphologic evolution are studied,the timescale is better to be controlled in millions of years.
出处 《第四纪研究》 CAS CSCD 北大核心 2008年第2期264-272,共9页 Quaternary Sciences
基金 国家自然科学基金项目(批准号:40234019)资助
关键词 基岩河道 地貌响应时间域 DL模型(detachment—limited model) bedrock channel, geomorphologic response time-scale, DL model( detachment-limited model)
  • 相关文献

参考文献24

  • 1Molnar P.Nature,nurture and landscape.Nature,2003,426:612-614
  • 2Raymo M E,Ruddiman W F.Tectonic forcing of Late Cenozoic climate.Nature,1992,359:117-122
  • 3Clemens S,Prell W,Murray D et al.Forcing mechanisms of the Indian ocean monsoon.Nature,1991,353:720-725
  • 4Edmond J M.Himalayan tectonics,weathering processes,and the Strontium Isotope Record in marine limestones.Science,1992,258:1594-1597
  • 5Molnar P,England P.Late Cenozoic uplift of mountain ranges and global climate change:Chicken or egg? Nature,1990,346:29-34
  • 6Simon L,Davis P.Cenozoic climate change as a possible cause for the rise of the Andes.Nature,2003,425:792-797
  • 7Dadson S J,Hovius N,Chen H et al.Links between erosion,runoff variability and seismicity in the Taiwan orogen.Nature,2003,426:648-651
  • 8Pinter N,Brandon M T.How erosion builds mountains.Scientific American,1997,276(4):74-79
  • 9Godard V,Cattin R,Lavé J.Numerical modeling of mountain building:Interplay between erosion law and crustal rheology.Geophysical Research Letters,2004,31:doi:10.1029/2004GL021006
  • 10Whipple K X.Fluvial landscape response time:How plausible is steady-state denudation? American Journal of Science,2001,301:313-325

二级参考文献76

  • 1岳乐平,雷祥义,屈红军.黄河中游水系的阶地发育时代[J].地质论评,1997,43(2):186-192. 被引量:93
  • 2杨逸畴 李炳元.西藏地貌[M].北京:科学出版社,1983.166-199.
  • 3钟大赉 吴根耀 等.藏东新生代陆内变形特征.青藏高原岩圈结构演化和动力学[M].广州:广东科技出版社,1998.336-348.
  • 4周志澄 中国青藏高原研究会.西藏南部白垩系及下第三系的沉积特征及其环境意义.中国青藏高原研究会第一届学术讨论会论文选[M].北京:科学出版社,1992.280-286.
  • 5离雅风 青藏高原项目专家委员会.青藏高原进入冰冻圈的时代、高度及其对周围地区的影响.青藏高原形成演化、环境变迁与生态系统研究学术论文年刊(1994)[M].北京:科学出版社,1995.136-146.
  • 6Hancock G S, Anderson R S, Whipple K X. Beyond power: Bedrock river incision processes and form. In: Tinkler K J, Wohl E E eds.Rivers Over Rock: Fluvial Processes in Bedrock Channels. Washington D C: The American Geophysical Union, Geophysical Monograph 1
  • 7Snyder N P, Whipple K X, Tucker G E et al. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 2000, 112(8): 1 25
  • 8Sklar L, Dietrich W E, Howard A D. The influence of sediment supply on river incision into bedrock: A theoretical investigation. EOS ( Transactions, American Geophysical Union), 1996, 77: F251- F252
  • 9Reneau S L. Stream incision and terrace development in Frijoles Canyon,Bandalier National Monument, New Mexico, and the influence lithology and climate. Geomorphology, 2000, 32( 1 - 2): 171 - 193
  • 10Wohl E E. Bedrock benches and boulder bars: Floods in the Burdekin Gorge of Australia. Geological Society of America Bulletin, 1992,104(6): 770 - 778

共引文献63

同被引文献468

引证文献16

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部