摘要
证明了半正算子方程组x=λK_1F_1(x,y),y=λK_2F_2(x,y)正解的存在性结果,其中λ>0为参数,P为实Banach空间E中一个完全锥,K_1,K_2:P→P为线性全连续算子,F_1,F2:P→E为连续有界算子.作为应用,给出了一类半正微分边值系统正解存在性的结果.
In this paper, the existence of positive solutions for the operator equation system{x=λK1F1(x,y)y=λK2F2(x,y)is considered, where A 〉 0 is a parameter, P is a total cone of the real Banach space E. Under some superlinear conditions it is shown that there exists λ〉 0 such that the operator equation system has at least one positive solution for 0 〈 λ 〈 λ. As an application, the existence of positive solutions of a semi-positone differential boundary value system is investigated.
出处
《系统科学与数学》
CSCD
北大核心
2008年第4期468-481,共14页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10671167)资助项目.
关键词
半正算子方程组
不动点指数
正解
Semi-positive operator equation system, the fixed point index, positive solutions.