期刊文献+

整环Z[ω]中的RSA

RSA Cryptosystem in the Domain Z[ω]
原文传递
导出
摘要 利用模元素n在整环Z[ω]中的相伴元将复平面分为六部分,并指定其中一部分为消息的有效域,将RSA密码体制及其数字签名方案推广到了Z[ω]中,并给出了一个实例.在安全性方面,所提出的推广体制比原RSA体制具有一定的优势. The extended RSA cryptosystem and its signature scheme are proposed in the domain Z[ω] by designating one of the six regions of the plural plane which are divided into by the associated elements of modular number n as the message validity region, and an example is given.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第8期147-150,共4页 Mathematics in Practice and Theory
基金 国家自然基金(60473027)
关键词 RSA体制 Z[ω]整环 数字签名 RSA eryptosystem Z[ω] domain digital signature
  • 相关文献

参考文献8

  • 1Colin Boyd. A new multiple key cipher and improved voting scheme[A], EUROCRYPT'89, LNCS 474[C],1990. 617-625.
  • 2Chih-Chwen Chuang, James George Dunham. Matrix extensions of RSA algorithm[A], CRYPTO'90, LNCS 537[C].1991. 140-155.
  • 3Tsuyoshi Takagi. Fast RSA-type cryptosystems using n-adic expansion[A], CRYPTO' 97, LNCS 1294[C] ,1997. 372-384.
  • 4Suyoshi Takagi. Fast RSA-type cryptosystem modulo p^kq[A], CRYPTO'98, LNCS 1462[C],1998. 318-326.
  • 5Seongan Lim, Seungjoo Kim, Ikkwon Yie, Hongsub Lee. A generalized Takagi-cryptosystem with a modulus of the form p^rq^s[A]. INDOCRYPT 2000, LNCS 1977[C].2000, 283-294.
  • 6Anand Krishnamurthy, Yiyan Tang, Cathy Xu, Yuke Wang. An efficient implementation of multi-prime RSA on DSP processor[A]. proceedings Of the 2003 IEEE international conference on acoustics[C],2003. 437-440.
  • 7Elkamchouchi H, Elshenawy K, Shaban H. Extended RSA cryptosystem and digital signature SChemes in the domain of Gaussian integers[A], ICCS,2002[C],91-95.
  • 8Kenneth Ireland, Michael Rosen. A classical introduction to modern number theory[M]. Springer-Verlag,1982.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部